Infectious hematopoietic necrosis virus (IHNV) is the causative agent of IHN triggering a systemic syndrome in salmonid fish. Although IHNV has always been associated with low levels of mortality in Italian trout farming industries, in the last years trout farmers have experienced severe disease outbreaks. However, the observed increasing virulence of IHNV is still based on empirical evidence due to the poor and often confounding information from the field. Virulence characterization of a selection of sixteen Italian isolates was performed through challenge of juvenile rainbow trout to confirm field evidence. The virulence of each strain was firstly described in terms of cumulative mortality and survival probability estimated by Kaplan-Meier curves. Furthermore, parametric survival models were applied to analyze the mortality rate profiles. Hence, it was possible to characterize the strain-specific mortality peaks and to relate their topology to virulence and mortality. Indeed, a positive correlation between maximum mortality probability and virulence was observed for all the strains. Results also indicate that more virulent is the strain, the earliest and narrowest is the mortality peak. Additionally, intra-host viral quantification determined in dead animals showed a significant correlation between viral replication and virulence. Whole-genome phylogeny conducted to determine whether there was a relation between virulence phenotype and IHNV genetics evidenced no clear clustering according to phenotype. Moreover, a root-to-tip analysis based on genetic distances and sampling date of Italian IHNV isolates highlighted a relevant temporal signal indicating an evolving nature of the virus, over time, with the more virulent strains being the more recent ones. This study provides the first systematic characterization of Italian IHNV's virulence. Overall results confirm field data and point out an abrupt increase in IHNV virulence, with strains from 2015-2019 showing moderate to high virulence in rainbow trout. Further investigations are needed in order to extensively clarify the relation between evolution and virulence of IHNV and investigate the genetic determinants of virulence of this viral species in rainbow trout.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570149 | PMC |
http://dx.doi.org/10.1093/ve/veab056 | DOI Listing |
BMC Infect Dis
December 2024
Lab Services and Infection Control; Chief, Education and Research, Artemis Hospitals, Sector-51, Gurugram, Haryana, India.
Klebsiella pneumoniae, a pathogen of concern worldwide can be classified as classical K. pneumoniae (cKp) and Hypervirulent K. pneumoniae (HvKp).
View Article and Find Full Text PDFBMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, 276005, Shandong, China.
Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
Background: Klebsiella pneumoniae is a clinically relevant pathogen that has raised considerable public health concerns. This study aims to determine the presence of beta-lactamase genes and perform molecular genotyping of multidrug-resistant (MDR) K. pneumoniae clinical isolates.
View Article and Find Full Text PDFFEMS Microbiol Rev
December 2024
Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!