Background: Although bullfrog oil (BFO) exerts anti-inflammatory effects, it has undesirable properties limiting its use.

Methodology: BFO nanocapsules (BFONc) were produced through nanoprecipitation, and their physicochemical and morphological properties were characterized. To evaluate the biocompatibility of the formulation, a mitochondrial activity evaluation assay was conducted, and cell uptake was assessed. The in vitro anti-inflammatory activity was evaluated by measuring reactive oxygen species (ROS), nitric oxide (NO), type-6 interleukin (IL-6), and tumor necrosis factor (TNF) levels. The in vivo anti-inflammatory effect was assessed by quantifying myeloperoxidase (MPO) levels using the carrageenan-induced paw edema model.

Results: BFONc showed a particle size of 233 ± 22 nm, a polydispersity index of 0.17 ± 0.03, and a zeta potential of -34 ± 2.6mV. BFONc revealed remarkable biocompatibility and did not induce changes in cell morphology. Furthermore, BFONc decreased ROS levels by 81 ± 4%; however, NO level increased by 72 ± 18%. TNF and IL-6 levels were reduced by approximately 10% and 90%, respectively. Significant in vivo anti-inflammatory activity was observed compared to dexamethasone. MPO levels were reduced up to 2 MPOs/mg.

Conclusion: Taken together, the results pointed out the remarkable biocompatibility and anti-inflammatory effects of BFONc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572098PMC
http://dx.doi.org/10.2147/IJN.S318018DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory activity
12
bullfrog oil
8
anti-inflammatory effects
8
vivo anti-inflammatory
8
mpo levels
8
remarkable biocompatibility
8
levels reduced
8
anti-inflammatory
6
bfonc
5
levels
5

Similar Publications

Rheumatoid arthritis is an autoimmune disorder affecting multiple joints and requires lifelong treatment. Present study was designed to formulate Esculin-loaded chitosan nanoparticles (ENPs) and evaluation of its anti-inflammatory and anti-arthritic action. The acute toxicity study of ENPs was also performed.

View Article and Find Full Text PDF

Virus encephalitis (VE), recognized as one of the common kinds of central nervous system (CNS) diseases after virus infection, has a surprising correlation with autoimmune encephalitis (AE) when autoimmune antibodies emerge in cerebrospinal fluid (CSF) or serum. Herpes simplex virus and Epstein-Barr virus are the most critical agents worldwide. By molecular mimicry, herpes viruses can invade the brain directly or indirectly.

View Article and Find Full Text PDF

For the first time, critical review on R. Br. (Boraginaceae) is established.

View Article and Find Full Text PDF

In clinical mastitis of dairy cows, the abnormal accumulation of apoptotic cells (ACs) and subsequent secondary necrosis and inflammation pose significant concerns, with macrophage-mediated efferocytosis, crucial for ACs clearance, remaining unexplored in this context. In nonruminants, MER proto-oncogene tyrosine kinase (MERTK) receptors are essential for efferocytosis and A Disintegrin and Metalloproteinase 17 (ADAM17) is thought to play a role in regulating MERTK integrity. This study aimed to delineate the in situ role of efferocytosis in clinical mastitis, with a particular focus on the interaction between MERTK and ADAM17 in bovine macrophages.

View Article and Find Full Text PDF

Total Synthesis and Anti-Inflammatory Activity of Tectoridin and Related Isoflavone Glucosides.

J Nat Prod

December 2024

Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China.

The first total syntheses of four isoflavone glucosides, tectoridin (), tectoridin A (), tectorigenin 7--β-d-glucopyranosyl-12--β-d-glucopyranoside (), and isotectroigenin 7--β-d-glucopyranoside (), have been accomplished. Key steps in our synthetic approach include a regioselective halogenation reaction, followed by methanolysis to introduce the -OCH group into isoflavone frameworks and a PTC-promoted stereoselective glycosidation to establish glycosidic bonds. The synthesized isoflavone glucosides (-) and their corresponding aglycones ( and ) were evaluated for anti-inflammatory activity against nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 β (IL-1β) in lipopolysaccharide (LPS)-induced RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!