Lung cancers are the leading cause of cancer-related mortality worldwide, and the majority of lung cancers are non-small cell lung carcinoma (NSCLC). Overexpressed or activated EGFR has been associated with a poor prognosis in NSCLC. We previously identified a circular noncoding RNA, hsa_circ_0000190 (C190), as a negative prognostic biomarker of lung cancer. Here, we attempted to dissect the mechanistic function of C190 and test the potential of C190 as a therapeutic target in NSCLC. C190 was upregulated in both NSCLC clinical samples and cell lines. Activation of the EGFR pathway increased C190 expression through a MAPK/ERK-dependent mechanism. Transient and stable overexpression of C190 induced ERK1/2 phosphorylation, proliferation, and migration and xenograft tumor growth . RNA sequencing and Expression2Kinases (X2K) analysis indicated that kinases associated with cell-cycle and global translation are involved in C190-activated networks, including CDKs and p70S6K, which were further validated by immunoblotting. CRISPR/Cas13a-mediated knockdown of C190 decreased proliferation and migration of NSCLC cells and suppressed tumor growth . TargetScan and CircInteractome databases predicted that C190 targets CDKs by sponging miR-142-5p. Analysis of clinical lung cancer samples showed that C190, CDK1, and CDK6 expressions were significantly higher in advanced-stage lung cancer than in early-stage lung cancer. In summary, C190 is directly involved in EGFR-MAPK-ERK signaling and may serve as a potential therapeutic target for the treatment of NSCLC. SIGNIFICANCE: The circRNA C190 is identified as a mediator of multiple pro-oncogenic signaling pathways in lung cancer and can be targeted to suppress tumor progression.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-21-1473DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
c190
12
lung
9
circrna c190
8
non-small cell
8
cell lung
8
lung cancers
8
therapeutic target
8
proliferation migration
8
tumor growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!