In this work, a multiply-amplified peroxidase-like colorimetric strategy was proposed for the high-specific recognition and ultrasensitive detection of kanamycin (Kana). Based on two Kana-aptamer triggered sequential reactions, G-quadruplex (G4) and DNA (hairpins) modified Ni-Fe layered double oxides (LDOs) could be obtained simultaneously. Later, a three-dimensional G4/LDO frame networks, as a novel DNAzyme, with enhanced peroxidase-like catalytic activity was assembled through electrostatic interaction. This DNAzyme catalyzed 3,3',5,5'-tetramethylbenzidine oxidation for the colorimetric detection of Kana. The enhancement principle was discussed and the charge transfer process during the catalytic reaction was investigated. Under the optimal experiment conditions, the proposed method exhibited high sensitivity, where the linear range is from 10 fM to 10 nM (r = 0.992), and the limit of detection is 3 fM (S/N = 3). The practicability of this assay was demonstrated by successfully application of residual Kana detection in genuine milk and urine samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2021.339169 | DOI Listing |
Anal Chim Acta
February 2025
Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:
Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:
Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China.
Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005 China. Electronic address:
As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen-antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!