Errorless and trial-and-error learning of object locations in patients with executive deficits after brain injury.

Neuropsychol Rehabil

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.

Published: March 2023

Studies investigating the efficacy of errorless learning (EL), a rehabilitation method in which the occurrence of errors during learning are eliminated, have predominantly involved patients with memory impairment. However, the most recent perspective on the underlying mechanism of EL explicitly takes executive processes into account. The aim of this study was to investigate whether EL of object locations is beneficial for memory performance compared to trial-and-error learning (TEL) in patients with acquired brain injury (ABI) experiencing executive deficits (= 15) and matched healthy controls (= 15). Participants completed an EL and TEL condition of a computerized spatial learning task, in which the location of everyday objects had to be memorized. The number of errors made during learning was predetermined, varying from 0 (EL condition) to 1, 2, 3, 4 or 5 errors (TEL condition). Results showed a beneficial effect of EL on memory performance in both ABI patients and controls (< .001), but this advantage was not larger in ABI patients compared to controls and was not moderated by the amount of errors made during learning.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09602011.2021.1997765DOI Listing

Publication Analysis

Top Keywords

trial-and-error learning
8
object locations
8
executive deficits
8
brain injury
8
errors learning
8
beneficial memory
8
memory performance
8
tel condition
8
learning
6
errorless trial-and-error
4

Similar Publications

Perovskites attract significant attention as a coating material in optical fiber sensing, but challenges remain due to the limited discovery of suitable materials and the high trial-and-error costs, resulting in only a few perovskites being used in optical sensing experiments. Addressing this issue, a novel systematic computational screening strategy for perovskites is established. This strategy is demonstrated to accelerate the discovery of perovskite coating materials that can enhance optical sensing sensitivity.

View Article and Find Full Text PDF

Designing invisibility devices for required frequency bands is important in anti-detection methods in various fields such as communications, construction, and others. However, traditional design methods are time-consuming, with manual adjustment of parameters and continuous trial and error. Fortunately, the data-driven approach based on deep learning has revolutionized the field.

View Article and Find Full Text PDF

Membrane incompatibility poses significant health risks, including severe complications and potential fatality. Surface modification of membranes has emerged as a pivotal technology in the membrane industry, aiming to improve the hemocompatibility and performance of dialysis membranes by mitigating undesired membrane-protein interactions, which can lead to fouling and subsequent protein adsorption. Affinity energy, defined as the strength of interaction between membranes and human serum proteins, plays a crucial role in assessing membrane-protein interactions.

View Article and Find Full Text PDF

Memory consolidation from a reinforcement learning perspective.

Front Comput Neurosci

January 2025

Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea.

Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns.

View Article and Find Full Text PDF

Optimizing process and heat-treatment parameters of laser powder bed fusion for producing Ti-6Al-4V alloys with high strength and ductility is crucial to meet performance demands in various applications. Nevertheless, inherent trade-offs between strength and ductility render traditional trial-and-error methods inefficient. Herein, we present Pareto active learning framework with targeted experimental validation to efficiently explore vast parameter space of 296 candidates, pinpointing optimal parameters to augment both strength and ductility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!