The impressive breath-hold capabilities of marine mammals are facilitated by both enhanced O stores and reductions in the rate of O consumption via peripheral vasoconstriction and bradycardia, called the dive response. Many studies have focused on the extreme role of the dive response in maximizing dive duration in marine mammals, but few have addressed how these adjustments may compromise the capability to hunt, digest and thermoregulate during routine dives. Here, we use DTAGs, which record heart rate together with foraging and movement behaviour, to investigate how O management is balanced between the need to dive and forage in five wild harbour porpoises that hunt thousands of small prey daily during continuous shallow diving. Dive heart rates were moderate (median minimum 47-69 bpm) and relatively stable across dive types, dive duration (0.5-3.3 min) and activity. A moderate dive response, allowing for some perfusion of peripheral tissues, may be essential for fuelling the high field metabolic rates required to maintain body temperature and support digestion during diving in these small, continuously feeding cetaceans. Thus, despite having the capacity to prolong dives via a strong dive response, for these shallow-diving cetaceans, it appears to be more efficient to maintain circulation while diving: extreme heart rate gymnastics are for deep dives and emergencies, not everyday use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580435PMC
http://dx.doi.org/10.1098/rspb.2021.1596DOI Listing

Publication Analysis

Top Keywords

dive response
16
dive
9
heart rates
8
harbour porpoises
8
marine mammals
8
dive duration
8
heart rate
8
high heart
4
rates hunting
4
hunting harbour
4

Similar Publications

Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice.

J Appl Physiol (1985)

December 2024

Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.

Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.

View Article and Find Full Text PDF

This paper investigates the impact of artificial intelligence (AI) and big data analytics on optimizing cross-border e-commerce efficiency for straw hat manufacturers in Zhejiang Province, China. It identifies market and consumer demand trends through machine learning analysis of comprehensive e-commerce data and leverages generative AI to revolutionize production and marketing processes. The integration of AI-generated content (AIGC) technology facilitates streamlined design-to-production cycles and rapid adaptation to market changes and consumer feedback.

View Article and Find Full Text PDF

Marine mammals are known to respond to various human noises, including and in certain cases, strongly, to military active sonar. Responses include small and short-term changes in diving behavior, horizontal avoidance of an ensonified area, and mass strandings. Considerable research has been conducted using short-term biologging tags to understand these responses.

View Article and Find Full Text PDF

Species-specific responses to di (2-ethylhexyl) phthalate reveal activation of defense signaling pathways in California sea lion but not in human skeletal muscle cells in primary culture.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Centro de Investigaciones Biológicas del Noroeste S.C., Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico. Electronic address:

Higher antioxidant defenses in marine than terrestrial mammals allow them to cope with oxidative stress associated with diving-induced ischemia/reperfusion. Does this adaptation translate to inherent resistance to other stressors? We analyzed oxidative stress indicators in cells derived from human and California sea lion (Zalophus californianus) skeletal muscle upon exposure to di (2-ethylhexyl) phthalate (DEHP). Human abdominal muscle biopsies were collected from healthy women undergoing planned cesarean surgery.

View Article and Find Full Text PDF

Rock mechanics is an indispensable discipline in diverse sectors, from resource retrieval to disaster mitigation. Diving deeper into this field, particularly into microscale rock mechanics, offers strategic insights and potential advancements for rock engineering practice. The objective of this research is to map the scientific production tied to microscale rock mechanics to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!