A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery of I-WP minimal-surface-based photonic crystal in the scale of a longhorn beetle. | LitMetric

Discovery of I-WP minimal-surface-based photonic crystal in the scale of a longhorn beetle.

J R Soc Interface

Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.

Published: November 2021

The structural colours of certain insects are produced by three-dimensional periodic cuticle networks. The topology of the cuticle network is known to be based on the mathematically well-defined triply periodic minimal surface. In this paper, we report the discovery of an I-WP minimal-surface-based photonic crystal on the scale of a longhorn beetle. In contrast to gyroid or diamond surfaces, which are found in butterfly and weevil scales, respectively, the I-WP surface is an unbalanced minimal surface, wherein two subspaces separated by the surface are different in terms of shape and volume fraction. Furthermore, adjacent photonic crystal domains were observed to share a particular crystal plane as their domain boundary, indicating that they were developed as twin crystals. These structural features pose certain new questions regarding the development of biological photonic crystals. We also performed an optical analysis of the structural colour of the longhorn beetle and successfully explained the wavelength of reflection by the photonic bandgap of the I-WP photonic crystal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580427PMC
http://dx.doi.org/10.1098/rsif.2021.0505DOI Listing

Publication Analysis

Top Keywords

photonic crystal
16
longhorn beetle
12
discovery i-wp
8
i-wp minimal-surface-based
8
minimal-surface-based photonic
8
crystal scale
8
scale longhorn
8
minimal surface
8
photonic
6
crystal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!