Atmospheric fine particle pollution is known to cause many adverse health effects. However, the potential mechanisms of PM-induced cytotoxicity still needs further understanding. Herein, we integrated cytotoxicity, component profiling, metabolomics and proteomics data to deeply explain the biological responses of human bronchial epithelial cells exposed to PM. We observed that PM caused cell cycle arrest, calcium influx, cell damage and further induced cell apoptosis. The contents of heavy metals and 4-6 rings PAHs in PM were positively correlated with intracellular ROS, indicating that they might be the important components to induce the above cytotoxicity. Integrated metabolomics and proteomics analysis revealed the significant alterations of many metabolic processes, such as glycolysis, the citric acid cycle, amino acid metabolism and lipid metabolism. Notably, we found that PM inhibited the integrin signaling pathway, including down-regulating the protein expression of integrins and the phosphorylation of downstream signaling kinases, which might ultimately affect cell cycle progression, cell metabolism and apoptosis. This study provided a comprehensive data resource for the deep understanding of biological toxicity mechanisms caused by atmospheric fine particles in human lung-bronchial epithelium cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127573 | DOI Listing |
Sci Transl Med
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Sci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Transl Med
January 2025
Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA.
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!