Metal zinc (Zn) has been the focus of many environmental toxicological studies, but there are limited studies on its potential dietary molecular toxicity and physiology. The present study was the first to use multi-omics-based approaches to explore the fish intestine-liver axis under dietary Zn exposure. Golden pompano Trachinotus ovatus were exposed to different dietary concentrations (78.4, 134.6, and 161.4 mg/kg as the control, low-dose Zn, and high-dose Zn groups, respectively) of Zn for 4-week. Low-dose Zn exposure significantly promoted the fish growth, whereas the high-dose Zn exposure reduced the fish growth. Co-analysis of 16S diversity, metagenome and transcriptome showed that the low-dose Zn enriched the intestinal microflora and changed the dominant microflora abundances (Proteobacteria, Fusobacteria, Firmicutes and Bacteroidetes), as well as activated the growth hormone metabolism in the liver. Meanwhile, the high-dose of Zn caused the intestinal microbiota dysbiosis, activated the Type VI secretion systems (T6SSs), and further triggered the oxidative stress response, immunity, and antiviral function of the liver. Multi-omics revealed the interference of long-term Zn dietary exposure on the intestine-liver axis. There was an apparent homeostasis of Zn accumulation in the fish tissues, but the window of dietary Zn nutritional requirements versus toxicity appeared to be narrow for the golden pompano. These results provided new insight into the adverse effects and regulatory mechanisms of dietary Zn requirements and toxicity in marine fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.151497 | DOI Listing |
Aquat Toxicol
December 2024
Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot Zhaojun Road No 24, Hohhot 010030, PR China. Electronic address:
Microplastic (MPs) can adsorb co-existing pollutants, and alter their behavior and toxicity. Meanwhile, amide herbicides like acetochlor (ACT) are widely used in agriculture, with potential endocrine-disrupting effects that raise ecological concerns. The aim of this research was to examine the effects of MPs on the reproductive endocrine disruption caused by ACT and the effects of maternal transmission.
View Article and Find Full Text PDFGut
January 2025
Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
Background: The microbiota is emerging as a key factor in the predisposition to insulin resistance and obesity.
Objective: To understand the interplay among gut microbiota and insulin sensitivity in multiple tissues.
Design: Integrative multiomics and multitissue approach across six studies, combining euglycaemic clamp measurements (used in four of the six studies) with other measurements of glucose metabolism and insulin resistance (glycated haemoglobin (HbA1c) and fasting glucose).
Heliyon
September 2024
Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Rd, Hangzhou City, 310006, China.
Background: In the last two decades, the role of the gut microbiome in the development, maintenance, and outcome of sepsis has received increased attention; however, few descriptive studies exist on its research focus, priorities, and future prospects. This study aimed to identify the current state, evolution, and emerging trends in the field of gut microbiota and sepsis using bibliometric analysis.
Methods: All publications on sepsis and gut microbiota were retrieved from the Web of Science Core Collection and included in this study.
NPJ Biofilms Microbiomes
September 2024
Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
J Anim Sci Biotechnol
August 2024
State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
Background: In the realm of swine production, optimizing body composition and reducing excessive fat accumulation is critical for enhancing both economic efficiency and meat quality. Despite the acknowledged impact of dietary calcium (Ca) and phosphorus (P) on lipid metabolism, the precise mechanisms behind their synergistic effects on fat metabolism remain elusive.
Results: Research observations have shown a decreasing trend in the percentage of crude fat in carcasses with increased calcium and phosphorus content in feed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!