A versatile platform for the tumor-targeted delivery of immune checkpoint-blocking immunoglobin G.

J Control Release

Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

Published: December 2021

Immunotherapies based on immune checkpoint-blocking antibodies have been considered the most attractive cancer treatments in recent years. However, the systemic administration of immune checkpoint-blocking antibodies is limited by low response rates and high risk of inducing immune-related adverse events (irAEs), which might be overcome by the tumor-targeted delivery of these antibodies. To achieve tumor-targeted delivery, immune checkpoint-blocking antibodies are usually modified with tumor-homing ligands through difficult genetic fusion or chemical conjugation. As most immune checkpoint-blocking antibodies are immunoglobin G (IgG) antibodies, we hypothesize that these IgG antibodies might be noncovalently modified with a tumor-homing ligand fused to an IgG-binding domain (IgBD). To test this hypothesis, the tumor-homing Z affibody, which targets platelet-derived growth factor receptor β (PDGFRβ), was fused to the Fab-selective IgBD in a trimeric format. After mixing Z fused to the IgBD with immune checkpoint-blocking IgG against programmed death-ligand 1 (αPD-L1), a novel homogenous complex was formed, indicating that αPD-L1 had been successfully modified with Z fused to the IgBD. Z-modified αPD-L1 bound to both PDGFRβ and PD-L1, thus leading to greater tumor uptake and antitumor effects in mice bearing PDGFRβPD-L1 tumor grafts. In addition, due to the broad spectrum of IgBD for IgG, immune checkpoint-blocking IgG antibodies against cytotoxic T-lymphocyte-associated protein 4 (αCTLA-4) and signal regulatory protein alpha (αSIRPα) were also modified with Z fused to the IgBD. These results demonstrated that a tumor-homing ligand fused to the IgBD might be developed as a versatile platform for the modification of immune checkpoint-blocking IgG antibodies to achieve tumor-targeted delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2021.11.003DOI Listing

Publication Analysis

Top Keywords

immune checkpoint-blocking
32
tumor-targeted delivery
16
checkpoint-blocking antibodies
16
igg antibodies
16
fused igbd
16
checkpoint-blocking igg
12
antibodies
9
versatile platform
8
immune
8
delivery immune
8

Similar Publications

Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling.

View Article and Find Full Text PDF

Given the variability in the effectiveness of immune checkpoint blocking therapy among patients and tumor types, development of noninvasive methods for longitudinal assessment of immune cell function and early tumor response is crucial for precision immunotherapy. CD137 (4-1BB), a marker of activated T cells, plays a significant role in immunotherapy. However, its potential as an imaging biomarker for activated T cells in the tumor microenvironment has not been explored.

View Article and Find Full Text PDF

Antagonistic monoclonal antibodies (mAbs) targeting inhibitory immune checkpoints have revolutionized the field of oncology. CTLA-4, PD-1, and LAG3 are three co-inhibitory receptors, which can be expressed by subsets of T cells and which play a role in the regulation of adaptive immune responses. Blocking these immune checkpoints receptors (or their ligands) with antagonistic antibodies can lead to tumor regressions and lasting remissions in some patients with cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!