Background: The emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB are serious threats to global TB control. Molecular tests like GenoType MTBDRplus has revolutionized MDR-TB diagnosis by rapid detection of resistance, leading to early and appropriate management of DR-TB. Information about common mutations imparting resistance to RIF and INH, helps in understanding the disease epidemiology in various regions. The study was conducted to determine the genetic mutation in drug resistant tuberculosis in children less than 12 years with pulmonary or extrapulmonary tuberculosis.

Materials/methods: Retrospective analysis was done over a period of 54 months from January 2015 to June 2019 to study the resistance pattern and mutations present in DR-TB in children less than 12 years with suspected pulmonary or extrapulmonary tuberculosis using Hain's GenoType MTBDRplus VER 2.0.

Results: Over a period of 54 months, samples from 3461 patients with suspected TB were received for MGIT culture, out of which, 347 were positive for Mycobacterium tuberculosis. 250 of these 347 isolated were tested for drug resistance by Hain's GenoType MTBDRplus VER 2.0.61.1% were sensitive to isoniazid and rifampicin while 15.2% were DR-TB (38 out of 250). Out of these 38, 22 were MDR TB, 13 were isoniazid monoresistant (34.2%) and 3 were rifampicin monoresistant. The most common genotypic resistance for rifampicin was absence of rpoB WT8 band and presence of rpoB MUT 3 band (88%). 84.6% of the INH monoresistant isolates showed high level isoniazid resistant. All these isolates showed presence of katG MUT 1 band. On comparing Hain's GenoType MTBDRplus VER 2.0 with Xpert MTB/Rif Assay, most common mutation for rifampicin resistance at S531L which can be detected by Xpert MTB/Rif Assay (probe E). However, two cases with rifampicin resistance had mutation in codon region 509-513 and 513-519 which could be missed by Xpert MTB/Rif Assay.

Conclusions: We cannot solely rely on Xpert MTB/Rif Assay for detection of drug resistance due to the risk of missing the isoniazid monoresistance. GenoType MTBDRplus has revolutionized MDR-TB diagnosis by substantially reducing turn around time and leading to early management of DR-TB cases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijtb.2021.02.014DOI Listing

Publication Analysis

Top Keywords

genotype mtbdrplus
20
xpert mtb/rif
16
drug resistance
12
hain's genotype
12
mtbdrplus ver
12
mtb/rif assay
12
resistance pattern
8
mtbdrplus revolutionized
8
revolutionized mdr-tb
8
mdr-tb diagnosis
8

Similar Publications

Background: Drug-resistant tuberculosis (DR-TB) poses a major global challenge to public health and therapeutics. It is an emerging global concern associated with increased morbidity and mortality mostly seen in the low- and middle-income countries. Molecular techniques are highly sensitive and offer timely and accurate results for TB drug resistance testing, thereby positively influencing patient management plan.

View Article and Find Full Text PDF

Background: Tuberculosis (TB) is still the second causative agent of death worldwide after COVID-19. It is caused by (MTB) infection.

Objective: The aim of the current study was to compare the performance of GeneNAT real-time polymerase chain reaction analyzer and pre-loaded chip-based MTB screening and multidrug-resistant tuberculosis (MDR-TB) detection kit (Smart Sure MTB & MDR-TB, Genetix Biotech Asia Pvt.

View Article and Find Full Text PDF

Background: Isoniazid-resistant, rifampin-susceptible tuberculosis (Hr-TB) is associated with poor treatment outcomes and higher rates of acquisition of further drug resistance during treatment. Due to a lack of widespread diagnostics, Hr-TB is frequently undetected and its epidemiology is incompletely understood.

Methods: We studied the molecular epidemiology of Hr-TB among all patients diagnosed with culture-positive pulmonary tuberculosis between January 1 and June 30, 2017, at an urban referral tuberculosis clinic in Port-au-Prince, Haiti.

View Article and Find Full Text PDF

Background: Multi-drug resistant tuberculosis (MDR-TB) results in treatment failure and poor clinical outcomes. This study was carried out with the aim to determine the pattern of drug resistance against Mycobacterium tuberculosis towards first line ATT (anti-tubercular treatment) in sputum smear-positive patients using Line Probe Assay (LPA).

Methods: A cross sectional prospective study was carried out in a tertiary care Hospital of Meerut.

View Article and Find Full Text PDF

Background: The emergence of drug resistance is a threat to global tuberculosis (TB) elimination goals. This study investigated the drug resistance profiles of () using the Genotype MTBDRplus Line Probe Assay at the National Tuberculosis Reference Laboratory (NTRL) in Zambia.

Methods: A cross-sectional study was conducted between January 2019 and December 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!