Expression of heterologous genes in Escherichia coli is a routine technology for recombinant protein production, but the predictable recovery of properly folded and uniformly bioactive material remains a challenge. Misfolded proteins typically accumulate as insoluble inclusion bodies, and a variety of strategies have been employed in efforts to increase the yield of soluble product. One technique is the overexpression of E. coli protein chaperones during recombinant protein induction, in an effort to increase the folding capacity of the bacterial host. We have developed an alternative approach, by supplementing the host protein folding machinery with chaperones from other species. Extremophiles have evolved under conditions (extremes of temperature, salinity, pressure, and/or pH) that make them attractive candidates for possessing chaperones with novel folding activities. The green fluorescent protein (GFP) of Aequorea victoria, which is predominantly insoluble under typical recombinant expression culture conditions, was employed as an in vivo indicator of protein folding activity for chaperone homologs from a variety of extremophiles. For a subset of the chaperones tested, co-expression with GFP promoted an increase in both fluorescence signal intensity as well as the amount of GFP recovered in the soluble protein fraction. Several archaeal chaperones were also found to be able to refold soluble Lyt_Orn C40 peptidase from inclusion bodies in vitro. In particular, Pf Cpn(MA), a mutant chaperonin which exhibited significant refolding activity, is also shown to deconstruct the morphology and structure of inclusion bodies (Kurouski et al., 2012). Hence, the simple and rapid GFP assay provides a tool to screen for extremophilic chaperones that exhibit folding activity under E. coli growth conditions, and suggests that increasing the repertoire of heterologous chaperones might provide a partial but general solution to the problem of recombinant protein insolubility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2021.09.001 | DOI Listing |
Nat Commun
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
Clade 2.3.4.
View Article and Find Full Text PDFCell Biol Int
December 2024
College of Veterinary Medicine, Jilin University, Changchun, China.
Melatonin (MT), an endogenous hormone secreted by pineal gland, has the sedative, anti-inflammatory and antioxidant functions. However, there are few studies on whether MT affects the proliferation and differentiation of antler chondrocytes. The present study investigated the influences of MT on the proliferation and differentiation of antler chondrocytes, explored its regulation on runt-related transcription factor 2 (RUNX2), NOTCH1 and sonic hedgehog (SHH) signaling, and elucidated their interplays.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Department of Biotechnology, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea.
Background: Recombinant proteins produced in the cell factories are used in biological research, pharmaceutical production, and biochemical and agricultural applications. Molecular chaperones, such as heat shock proteins (Hsps), are co-expressed with recombinant proteins to enhance their yield, stability, and activity. When () is used as a cell factory, Hsps are the frequently used co-expression partners.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!