Computational modeling of protein/surface systems is challenging since the conformational variations of the protein and its interactions with the surface need to be considered at once. Adoption of first-principles methods to this purpose is overwhelming and computationally extremely expensive so that, in many cases, dramatically simplified systems (, small peptides or amino acids) are used at the expenses of modeling nonrealistic systems. In this work, we propose a cost-effective strategy for the modeling of peptide/surface interactions at a full quantum mechanical level, taking the adsorption of polyglycine on the TiO (101) anatase surface as a test case. Our approach is based on applying the periodic boundary conditions for both the surface model and the polyglycine peptide, giving rise to full periodic polyglycine/TiO surface systems. By proceeding this way, the considered complexes are modeled with a drastically reduced number of atoms compared with the finite-analogous systems, modeling the polypeptide structures at the same time in a realistic way. Within our modeling approach, full periodic density functional theory calculations (including implicit solvation effects) and molecular dynamics (AIMD) simulations at the PBE-D2* theory level have been carried out to investigate the adsorption and relative stability of the different polyglycine structures (, extended primary, β-sheet, and α-helix) on the TiO surface. It has been found that, upon adsorption, secondary structures become partially denatured because the peptide C═O groups form Ti-O═C dative bonds. AIMD simulations have been fundamental to identify these phenomena because thermal and entropic effects are of paramount importance. Irrespective of the simulated environments (gas phase and implicit solvent), adsorption of the α-helix is more favorable than that of the β-sheet because in the former, more Ti-O═C bonds are formed and the adsorbed secondary structure results less distorted with respect to the isolated state. Under the implicit water solvent, additionally, adsorbed β-sheet structures weaken with respect to their isolated states as the H-bonds between the strands are longer due to solvation effects. Accordingly, the results indicate that the preferred conformation upon adsorption is the α-helix over the β-sheet.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.1c00689DOI Listing

Publication Analysis

Top Keywords

full periodic
12
modeling protein/surface
8
secondary structure
8
tio 101
8
101 anatase
8
anatase surface
8
solvation effects
8
aimd simulations
8
adsorption α-helix
8
respect isolated
8

Similar Publications

Peroral Endoscopic myotomy (POEM) in pediatric achalasia: a retrospective cohort on institutional experience and quality of life.

Orphanet J Rare Dis

January 2025

Department of Pediatric Gastroenterology and Nutrition, Amsterdam UMC, Emma Children's Hospital, Vrije Universiteit, Amsterdam, The Netherlands.

Background: Achalasia is a rare esophageal motility disorder with an estimated annual incidence of 1-5/100.000 and a mean age at diagnosis > 50 years of age. Only a fraction of the patients has an onset during childhood (estimated incidence of 0.

View Article and Find Full Text PDF

Prenatal metal(loid) exposure and preterm birth: a systematic review of the epidemiologic evidence.

J Expo Sci Environ Epidemiol

January 2025

Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.

Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.

View Article and Find Full Text PDF

Background And Objectives: Gingivitis and periodontitis are common periodontal diseases that can significantly harm overall oral health, affecting the teeth and their supporting tissues, along with the surrounding anatomical structures, and if left untreated, leading to the total destruction of the alveolar bone and the connective tissues, tooth loss, and other more serious systemic health issues. Numerous studies have shown that propolis can help reduce gum inflammation, inhibit the growth of pathogenic bacteria, and promote tissue regeneration, but with varying degrees of success reported. For this reason, this comprehensive systematic review aims at finding out the truth concerning the efficacy of propolis mouthwashes in treating gingivitis and periodontitis, as its main objective.

View Article and Find Full Text PDF

Purpose: To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.

View Article and Find Full Text PDF

Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI.

J Pharmacokinet Pharmacodyn

January 2025

Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.

Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!