AI Article Synopsis

  • Monitoring ion gradients at the plasma membrane is crucial for understanding biological processes, but existing methods often lead to issues like intracellular accumulation of sensors.
  • Researchers developed recombinant fluorescent ion biosensors combined with traptavidin (TAv) that can attach directly to biotinylated surfaces on intact cells, preserving their functionality for ion imaging.
  • This method enabled the visualization of potassium efflux in neurons and demonstrated the potential for creating spatial arrangements of biosensors for simultaneous measurements, paving the way for enhanced studies of cellular signaling and transport.

Article Abstract

Given the importance of ion gradients and fluxes in biology, monitoring ions locally at the exterior of the plasma membrane of intact cells in a noninvasive manner is highly desirable but challenging. Classical targeting of genetically encoded biosensors at the exterior of cell surfaces would be a suitable approach; however, it often leads to intracellular accumulation of the tools in vesicular structures and adverse modifications, possibly impairing sensor functionality. To tackle these issues, we generated recombinant fluorescent ion biosensors fused to traptavidin (TAv) specifically coupled to a biotinylated AviTag expressed on the outer cell surface of cells. We show that purified chimeras of TAv and pH-Lemon or GEPII 1.0, Förster resonance energy transfer-based pH and K biosensors, can be immobilized directly and specifically on biotinylated surfaces including glass platelets and intact cells, thereby remaining fully functional for imaging of ion dynamics. The immobilization of recombinant TAv-GEPII 1.0 on the extracellular cell surface of primary cortical rat neurons allowed imaging of excitotoxic glutamate-induced K efflux in vitro. We also performed micropatterning of purified TAv biosensors using a microperfusion system to generate spatially separated TAv-pH-Lemon and TAv-GEPII 1.0 spots for simultaneous pH and K measurements on cell surfaces. Our results suggest that the approach can be greatly expanded by immobilizing various biosensors on extracellular surfaces to quantitatively visualize microenvironmental transport and signaling processes in different cell culture models and other experimental settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630794PMC
http://dx.doi.org/10.1021/acssensors.1c01369DOI Listing

Publication Analysis

Top Keywords

immobilization recombinant
8
recombinant fluorescent
8
intact cells
8
cell surfaces
8
cell surface
8
biosensors
6
cell
5
fluorescent biosensors
4
biosensors permits
4
permits imaging
4

Similar Publications

This chapter describes the protocol for heterologous expression of Phytophthora proteins in the yeast Pichia pastoris. Two methods to prepare the constructs for expression are described, using two different strains of P. pastoris, as well as methods for protein expression and purification by immobilized metal ion affinity (IMAC).

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.

View Article and Find Full Text PDF

This study was designed to investigate how the strength of the interaction between octacalcium phosphate (OCP) and modified chondroitin-A sulfate (CS-A), a glycosaminoglycan, regulates the adsorption-desorption of cytokines and subsequently affects the osteoblastic differentiation of mesenchymal stem cells (MSCs) in vitro. The utilization of cytokines produced by cells, such as macrophages, stimulated by the hydrolysis of OCP, is expected to enhance the bone regeneration capacity of the OCP. CS-Na was used to modify CS-A on the OCP immobilized with the amino group through electrostatic interactions.

View Article and Find Full Text PDF

Improved recombinant expression of soluble cathepsin B and L in Escherichia coli.

Appl Microbiol Biotechnol

December 2024

Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany.

Cysteine cathepsins such as cathepsin B and L play an important role in numerous diseases like acute pancreatitis or SARS-CoV-2 and therefore have high potential for the development of new therapeutics. To be able to screen for potent and selective inhibitors sufficient amounts of protein are required. Here, we present an easy and efficient protocol for the recombinant expression of soluble and active murine cathepsin B and L.

View Article and Find Full Text PDF

This study introduces a novel investigation of the interaction between cells and iron oxide-based magnetic nanoparticles (FeO MNPs) via protein secretion and machine learning (ML)-assisted surface-enhanced Raman scattering (SERS). For the first time, we produced FeO, FeO@PEG, FeO@PEI, and FeO@PEI MNPs by a one-pot coprecipitation reaction. The addition of polymers to the reaction conditions significantly affected the shape, surface charge, size, and size distribution of the MNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!