Monoatomic Platinum-Embedded Hexagonal Close-Packed Nickel Anisotropic Superstructures as Highly Efficient Hydrogen Evolution Catalyst.

Nano Lett

Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078.

Published: November 2021

The rational design of platinum (Pt) based nanostructures with specific crystal structure plays a significant role in their diverse applications. Herein, the anisotropic superstructures (ASs) of monoatomic Pt-embedded hexagonal close-packed nickel (hcp Ni) nanosheets were successfully synthesized for efficient hydrogen evolution in which an unusual dissociation-diffusion-desorption mechanism played a crucial role. The overpotential for the Pt/Ni ASs to reach the specific current density (10 mA cm) is 28.0 mV, which is much lower than that of conventional Pt/C catalyst (71.0 mV). Moreover, at the overpotential of 100 mV, the mass activity of 30.2 A mg for the Pt/Ni ASs is 1060% greater than that in conventional Pt/C catalyst (2.6 A mg). This work provides a new approach to synthesize highly anisotropic superstructures embedded with monoatomic noble metals to boost their hopeful applications in catalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c02313DOI Listing

Publication Analysis

Top Keywords

anisotropic superstructures
12
hexagonal close-packed
8
close-packed nickel
8
efficient hydrogen
8
hydrogen evolution
8
pt/ni ass
8
conventional pt/c
8
pt/c catalyst
8
monoatomic platinum-embedded
4
platinum-embedded hexagonal
4

Similar Publications

A new series of 222 adelite-type Co(GeO)(OH) ( = La-Sm) single crystals were grown by a high-temperature, high-pressure hydrothermal method (650 °C and 100 MPa). Single-crystal diffraction refinements yielded chiral one-dimensional (1D) chains of Co along the axis with an average 2.98 Å separation between Co centers in the [CoO(OH)] ribbon chains.

View Article and Find Full Text PDF

The adsorption of ellipsoidal colloidal particles on liquid interfaces induces interfacial deformation, resulting in anisotropic interface-mediated interactions and the formation of superstructures. Soft prolate-shaped microgels at the air-water interface offer an ideal model for studying spontaneous capillary-driven self-assembly due to their tunable aspect ratio, controlled functionality, and softness. These microgels consist of a polystyrene core surrounded by a cross-linked, fluorescently labeled poly([Formula: see text]-isopropylmethylacrylamide) shell.

View Article and Find Full Text PDF

Antisolvent controls the shape and size of anisotropic lead halide perovskite nanocrystals.

Nat Commun

October 2024

Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany.

Colloidal lead halide perovskite nanocrystals have potential for lighting applications due to their optical properties. Precise control of the nanocrystal dimensions and composition is a prerequisite for establishing practical applications. However, the rapid nature of their synthesis precludes a detailed understanding of the synthetic pathways, thereby limiting the optimisation.

View Article and Find Full Text PDF

Supramolecular materials have been assembled using a wide range of interactions, including the hydrophobic effect, DNA base-pairing, and hydrogen bonding. Specifically, DNA amphiphiles with a hydrophobic building block self-assemble into diverse morphologies depending on the length and composition of both blocks. Herein, we take advantage of the orthogonality of different supramolecular interactions - the hydrophobic effect, Watson-Crick-Franklin base pairing and RNA kissing loops - to create hierarchical self-assemblies with controlled morphologies on both the nanometer and the micrometer scales.

View Article and Find Full Text PDF

Films and patterns of 3D-oriented metal-organic frameworks (MOFs) afford well-ordered pore structures extending across centimeter-scale areas. These macroscopic domains of aligned pores are pivotal to enhance diffusion along specific pathways and orient functional guests. The anisotropic properties emerging from this alignment are beneficial for applications in ion conductivity and photonics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!