The preponderance and functional importance of isomeric biomolecules have become topical in biochemistry. Therefore, one must distinguish and identify all such forms across compound classes, over a wide dynamic range as minor species often have critical activities. With all the power of modern mass spectrometry for compositional assignments by accurate mass, the identical precursor and often fragment ion masses render this task a steep challenge. This is recognized in proteomics and epigenetics, where proteoforms are disentangled and characterized employing novel separations and non-ergodic dissociation mechanisms. This issue is equally pertinent to lipidomics, where the lack of isomeric depth has thwarted the deciphering of functional networks. Here we introduce a new platform, where the isomeric lipids separated by high-resolution differential ion mobility spectrometry (FAIMS) are identified using ozone-induced dissociation (OzID). Cationization by metals (here K, Ag, and especially Cu) broadly improves the FAIMS resolution of isomers with alternative C═C double bond (DB) positions or stereochemistry, presumably via metal attaching to the DB and reshaping the ion around it. However, the OzID yield diminishes for Ag and vanishes for Cu adducts. Argentination still strikes the best compromise between efficient separation and diagnostic fragmentation for optimal FAIMS/OzID performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.1c00251DOI Listing

Publication Analysis

Top Keywords

high-resolution differential
8
differential ion
8
ion mobility
8
disentangling lipid
4
lipid isomers
4
isomers high-resolution
4
ion
4
mobility spectrometry/ozone-induced
4
spectrometry/ozone-induced dissociation
4
dissociation metalated
4

Similar Publications

Evaluating ChatGPT-4 for the Interpretation of Images from Several Diagnostic Techniques in Gastroenterology.

J Clin Med

January 2025

Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal.

Several artificial intelligence systems based on large language models (LLMs) have been commercially developed, with recent interest in integrating them for clinical questions. Recent versions now include image analysis capacity, but their performance in gastroenterology remains untested. This study assesses ChatGPT-4's performance in interpreting gastroenterology images.

View Article and Find Full Text PDF

Background: X-linked hypophosphatemia (XLH) is a rare disorder characterized by elevated levels of fibroblast growth factor 23 (FGF-23), leading to hypophosphatemia and complications in diagnosis due to its clinical heterogeneity. Metabolomic analysis, which examines metabolites as the final products of cellular processes, is a powerful tool for identifying in vivo biochemical changes, serving as biomarkers of pathological abnormalities, and revealing previously uncharted metabolic pathways.

Methods: A multicenter cross-sectional case-control study of adult patients diagnosed with XLH was conducted.

View Article and Find Full Text PDF

Human adipose depots are functionally distinct. Yet, recent single-nucleus RNA sequencing (snRNA-seq) analyses largely uncovered overlapping or similar cell-type landscapes. We hypothesized that adipocyte subtypes, differentiation trajectories and/or intercellular communication patterns could illuminate this depot similarity-difference gap.

View Article and Find Full Text PDF

Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.

View Article and Find Full Text PDF

Cotton2035: From Genomics Research to Optimized Breeding.

Mol Plant

January 2025

College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China. Electronic address:

Cotton is the world's most important natural fiber crop and serves as an ideal model for studying plant genome evolution, cell differentiation, elongation, and cell wall biosynthesis. The first draft of the cotton genome for Gossypium raimondii, completed in 2012, marked the beginning of global efforts in cotton genomics. Over the past decade, the cotton research community has continued to assemble and refine genomes for both wild and cultivated Gossypium species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!