Purpose: To assess the dosimetric advantages of apertures in intracranial single fraction proton radiosurgery.

Materials And Methods: Six neuroma and 10 meningioma patients were investigated. For each patient, six plans were computed, with two spot spacing and three aperture settings (no apertures, 5 and 8 mm margin between aperture and clinical target volume [CTV]). All plans were optimized on the CTV with the same beam arrangement and the same single-field robust optimization (2 mm setup errors, 3.5% range uncertainties). Robustness analysis was performed with 0.5 and 1.0 mm systematic setup errors and 3.5% range uncertainties. CTV coverage in the perturbed scenarios and healthy brain tissue sparing in the surrounding of the CTV were compared.

Results: Meningiomas were larger and at a shallow depth than neuromas. In neuromas, spot spacing did not affect OAR doses or the robustness of CTV coverage and the apertures reduced brain dose without any significant impact on CTV robustness. In meningiomas, smaller spot spacing produced a reduction in brain V5Gy and improved robustness of CTV coverage; in addition, an 8 mm margin aperture reduced low and medium brain tissue doses without affecting robustness in the 0.5 mm perturbed scenario. A 5 mm margin aperture caused a reduction of plan robustness.

Conclusion: The optimal use of apertures is a trade-off between sparing of low and medium dose to the healthy brain and robustness of target coverage, also depending on size and depth of the lesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833271PMC
http://dx.doi.org/10.1002/acm2.13459DOI Listing

Publication Analysis

Top Keywords

spot spacing
12
margin aperture
12
ctv coverage
12
meningioma patients
8
8 mm margin
8
setup errors
8
errors 35%
8
35% range
8
range uncertainties
8
healthy brain
8

Similar Publications

In orchard environments, negative obstacles such as ditches and potholes pose significant safety risks to robots working within them. This paper proposes a negative obstacle detection method based on LiDAR tilt mounting. With the LiDAR tilted at 40°, the blind spot is reduced from 3 m to 0.

View Article and Find Full Text PDF

The compact line-focus X-ray tube for microbeam radiation therapy - Focal spot characterisation and collimator design.

Phys Med

January 2025

Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich (TUM), Munich, Germany; Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany; Forschungs-Neutronenquelle Heinz Maier-Leibnitz Zentrum (FRM II), Technical University of Munich (TUM), Garching, Germany.

Purpose: Microbeam radiation therapy (MRT) has shown superior healthy tissue sparing at equal tumour control probabilities compared to conventional radiation therapy in many preclinical studies. The limitation to preclinical research arises from a lack of suitable radiation sources for clinical application of MRT due to high demands on beam quality. To overcome these limitations, we developed and built the first prototype of a line-focus X-ray tube (LFXT).

View Article and Find Full Text PDF

The Heisenberg-RIXS instrument at the European XFEL.

J Synchrotron Radiat

January 2025

Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.

Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.

View Article and Find Full Text PDF

Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration.

View Article and Find Full Text PDF

Purpose: To develop a predictive model aimed at assessing the likelihood of improvement in corrected distance visual acuity (CDVA) for patients undergoing lenticule extraction using the SmartSight system from SCHWIND eye-tech-solutions. This model evaluates the effectiveness and weight of various clinical and procedural parameters in predicting enhancements in visual acuity.

Methods: Data from 1,262 eyes treated with the SmartSight system, encompassing 86 features, were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!