Background: This pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification.

Methods: A total of 674 patients with 712 thyroid nodules (TNs) (512 from internal dataset and 200 from external dataset) were randomly selected in this retrospective study. We used ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral ratio, and number of vessels) and gray-scale ultrasound (US) features defined by the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic performance of the model, the performance of another ANN model based on the gray-scale US features alone (TUS-Net), and that of radiologists.

Results: The TDUS-Net (0.898, 95% CI: 0.868-0.922) achieved a higher area under the curve (AUC) than that of TUS-Net (0.881, 95% CI: 0.850-0.908) in the internal tests. Compared with radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists (AUC: 0.810, 95% CI: 0.749-0.862) in the external tests.

Conclusions: Applying a machine learning model by combining both gray-scale US features and CDUS features can achieve comparable or even higher performance than radiologists in classifying TNs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jum.15873DOI Listing

Publication Analysis

Top Keywords

cdus features
16
machine learning
12
features
8
thyroid cancer
8
ann model
8
model based
8
diagnostic performance
8
gray-scale features
8
model
5
learning assisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!