A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation pathways of penthiopyrad by δ-MnO mediated processes: a combined density functional theory and experimental study. | LitMetric

Penthiopyrad is a widely used succinate dehydrogenase inhibitor (SDHI) fungicide and frequently detected in natural environments. In order to better understand its fate in natural systems, the degradation of penthiopyrad by manganese dioxide (MnO) was investigated in this study. The results show that penthiopyrad is rapidly degraded in the δ-MnO system. Moreover, density functional theory (DFT) calculations reveal that the atoms of C18, C12, and S1 in penthiopyrad have relatively high reactive active sites. The degradation products mainly include sulfoxides, sulfones, and diketone. A sulfoxide and sulfone are formed by the oxidation of the thioether group, and diketone is formed by the oxidation of the olefin group, respectively. Based on the DFT calculations and degradation products, the degradation pathway of penthiopyrad by MnO is proposed. This study also reveals that the degradation of penthiopyrad by δ-MnO is affected by various environmental factors. A warm environment, low pH, and co-existing humic acid are beneficial to the degradation of penthiopyrad in the δ-MnO system, whereas, co-existing metal cations inhibit penthiopyrad degradation. This result provides theoretical guidance for predicting the potential fate of penthiopyrad in natural environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1em00339aDOI Listing

Publication Analysis

Top Keywords

penthiopyrad δ-mno
12
degradation penthiopyrad
12
penthiopyrad
10
degradation
8
density functional
8
functional theory
8
study penthiopyrad
8
natural environments
8
δ-mno system
8
dft calculations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!