A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amphiphilic chitosan-polyaminoxyls loaded with daunorubicin: Synthesis, antioxidant activity, and drug delivery capacity. | LitMetric

The binding of aminoxyls to polymers extends their potential use as antioxidants and EPR-reporting groups and opens up new horizons for tailoring new smart materials. In this work, we synthesized and characterized non-sulfated and N-sulfated water-soluble amphiphilic chitosans with a critical micelle concentration of 0.02-0.05 mg/mL that contain 13-18% of aminoglycosides bound with various aminoxyls. Chitosan-polyaminoxyls (CPAs) formed micelles with hydrodynamic radii R of ca. 100 nm. The EPR spectra of CPAs were found to depend on the rigidity of the aminoxyl-polymer bond and structural changes caused by sulfation. CPAs demonstrated antioxidant capacity/activity in three tests against reactive oxygen species (ROS) of various nature. The charge of micelles and structure of aminoxyls significantly affected their antioxidant properties. CPAs were low toxic against tumor (HepG2, HeLa, A-172) and non-cancerous (Vero) cells (IC > 0.8 mM of aminoglycosides). Sulfated CPAs showed better water solubility and the ability of binding and retaining the anti-tumor antibiotic daunorubicin (DAU). DAU-loaded micelles of CPAs (CPAs-DAU) demonstrated a 1.5-4-fold potentiation of DAU cytotoxicity against several cell lines. CPAs-DAU micelles were found to affect the cell cycle in a manner markedly different from that of free DAU. Our results demonstrated the ability of CPAs to act as bioactive drug delivery vehicles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.170DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
cpas
7
amphiphilic chitosan-polyaminoxyls
4
chitosan-polyaminoxyls loaded
4
loaded daunorubicin
4
daunorubicin synthesis
4
synthesis antioxidant
4
antioxidant activity
4
activity drug
4
delivery capacity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!