Purpose: To evaluate the influence of corneal tomographic and biomechanical indexes on the refractive technique indication.

Methods: A total of 251 eyes from 251 patients interested in refractive surgery were enrolled in this cross-sectional and multicenter study. Previous to the surgeon decision, a preoperative protocol was performed by refractive optometrists, containing four sections: refraction, biometry, corneal tomography and biomechanics. The refractive surgeons made a first decision based only on refraction, biometric and tomographic information. Biomechanical indexes were revealed, and refractive surgeons made a second indication. Additionally, for Laser-Assisted in-situ Keratomileusis cases, the percent tissue altered were calculated. Possible indications were no refractive surgery, photorefractive keratectomy, Laser-Assisted in-situ Keratomileusis or intraocular Collamer lens.

Results: After the first surgery indication, the distribution was photorefractive keratectomy (47.4%), Laser-Assisted in-situ Keratomileusis (48.2%) while intraocular Collamer lens achieved 2.8%. This proportion changed significantly after the second indication regarding corneal biomechanics and photorefractive keratectomy and Laser-Assisted in-situ Keratomileusis decreased by 24% while intraocular Collamer lens increased 19%. A total of 69 eyes changed the indication (27.5%) and 182 eyes (72.5%) remained unchanged. All indications changes were from photorefractive keratectomy or Laser-Assisted in-situ Keratomileusis to intraocular Collamer lens or no surgery. Indication changes to intraocular Collamer lens were observed in 49 eyes (71%). Tomographic, biomechanical indexes, ablation depth and percent tissue altered achieved statistically significant differences between eyes without and with indication changes (all,  < .01).

Conclusion: New corneal biomechanical indexes could change the indication decision regarding biometric and tomographic data alone. Intraocular Collamer len was the preferred indication for eyes at risk of ectasia or with subclinical keratoconus due to corneal biomechanical parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1177/11206721211054725DOI Listing

Publication Analysis

Top Keywords

laser-assisted in-situ
20
in-situ keratomileusis
20
intraocular collamer
20
tomographic biomechanical
16
photorefractive keratectomy
16
collamer lens
16
refractive surgery
12
biomechanical indexes
12
keratectomy laser-assisted
12
multicenter study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!