A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure-Property Correlation of Hierarchically Porous Carbons for Fluorocarbon Adsorption. | LitMetric

Structure-Property Correlation of Hierarchically Porous Carbons for Fluorocarbon Adsorption.

ACS Appl Mater Interfaces

Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Published: November 2021

Although traditional commercially available porous carbon-fluorocarbon working pairs have shown promising applicability for adsorption cooling, advancements in engineered carbons may further improve the performance. Moreover, insights into structure-property relationships that target higher sorption capacities within these synthesized carbons may guide such materials' future design. We utilized hierarchically porous carbons (HPCs), synthesized with colossal microporous and mesoporous content characterized by high surface areas (up to 2689 m/g) and pore volume values (up to 10.31 cm/g) toward fluorocarbon R134a adsorption. This unique pore topology leads to exceptional R134a uptake, ∼250 wt %, outperforming the highest uptake carbon material to date, Maxsorb III (∼220 wt %). Material characterizations reveal that the outstanding R134a capacity may be attributed to textural properties and oxygen-terminated functional groups more than graphitization of the material. Most importantly, HPCs are efficiently utilized in a two-bed model chiller device, where the performance shows excellent working capacity (105 wt %, ∼2 times the value of reported carbon materials/R134a). Fluorocarbon adsorption on HPCs also displays fast kinetics (equilibrium time: ∼2 min) mainly driven by physical adsorption (Qst: ∼27 kJ/mol), characteristic of swiftly reversible behavior adsorption-desorption behaviors. This work provides a fundamental understanding of the applicability of HPCs/R134a working pair for adsorption cooling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c16315DOI Listing

Publication Analysis

Top Keywords

hierarchically porous
8
porous carbons
8
fluorocarbon adsorption
8
adsorption cooling
8
adsorption
6
structure-property correlation
4
correlation hierarchically
4
carbons
4
carbons fluorocarbon
4
adsorption traditional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!