Objective: Management of a patient presenting with a first seizure depends on the risk of additional seizures. In clinical practice, the recurrence risk is estimated by the treating physician using the neurological examination, brain imaging, a thorough history for risk factors, and routine scalp electroencephalogram (EEG) to detect abnormal epileptiform activity. The decision to use antiseizure medication can be challenging when objective findings are missing. There is a need for new biomarkers to better diagnose epilepsy following a first seizure. Recently, an EEG-based novel analytical method was reported to detect paroxysmal slowing in the cortical network of patients with epilepsy. The aim of our study is to test this method's sensitivity and specificity to predict epilepsy following a first seizure.

Methods: We analyzed interictal EEGs of 70 patients admitted to the emergency department of a tertiary referral center after a first seizure. Clinical data from a follow-up period of at least 18 months were available. EEGs of 30 healthy controls were also analyzed and included. For each EEG, we applied an automated algorithm to detect paroxysmal slow wave events (PSWEs).

Results: Of patients presenting with a first seizure, 40% had at least one additional recurring seizure and were diagnosed with epilepsy. Sixty percent did not report additional seizures. A significantly higher occurrence of PSWEs was detected in the first interictal EEG test of those patients who were eventually diagnosed with epilepsy. Conducting the EEG test within 72 h after the first seizure significantly increased the likelihood of detecting PSWEs and the predictive value for epilepsy up to 82%.

Significance: The quantification of PSWEs by an automated algorithm can predict epilepsy and help the neurologist in evaluating a patient with a first seizure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298770PMC
http://dx.doi.org/10.1111/epi.17110DOI Listing

Publication Analysis

Top Keywords

predict epilepsy
12
paroxysmal slow
8
slow wave
8
wave events
8
epilepsy
8
seizure
8
epilepsy seizure
8
presenting seizure
8
additional seizures
8
detect paroxysmal
8

Similar Publications

Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.

Neurosci Bull

January 2025

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, College of Pharmaceutical Sciences, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital), Zhejiang Chinese Medical University, Hangzhou, 310053, China.

Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis.

View Article and Find Full Text PDF

According to the International League Against Epilepsy (ILAE) 2015 classification, status epilepticus (SE) is a seizure that lasts longer than 5 min or a frequency of more than one seizure within 5 min, without returning to a normal level of consciousness between episodes. In this study, we aimed to evaluate the prognostic factors of SE and compare our patients with those of patients treated internationally with the modified status epilepticus severity score (mSTESS) to determine the reliability of this scoring system. The medical records of patients aged 1 month-17 years with SE who were treated at Çukurova University-Balcalı Training and Research Hospital between September 2018 and September 2021 and who were followed in the intensive care unit were included in the study.

View Article and Find Full Text PDF

Executive functions, including working memory, are typically assessed clinically with neuropsychological instruments. In contrast, computerized tasks are used to test these cognitive functions in laboratory human and animal studies. Little is known of how neural activity captured by laboratory tasks relates to ability measured by clinical instruments and, by extension, clinical diagnoses of pathological conditions.

View Article and Find Full Text PDF

A recurrent variant c.5126C>T in a Han-Chinese family with tuberous sclerosis complex.

Pak J Med Sci

January 2025

Lamei Yuan, MD, PhD, Health Management Center, the Third Xiangya Hospital, Disease Genome Research Center, Center for Experimental Medicine, the Third Xiangya Hospital, Research Center of Medical Experimental Technology, the Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China.

Objective: To identify the disease-causing variant in a family with tuberous sclerosis complex (TSC).

Methods: This study including a Han-Chinese pedigree recruited from the Third Xiangya Hospital, Central South University, Changsha, Hunan, China was conducted between February, 2019 and January, 2023. Detailed clinical examinations were performed on the proband and other family members of a Han-Chinese family with TSC.

View Article and Find Full Text PDF

Clinical and intracranial electrophysiological signatures of post-operative and post-ictal delirium.

Clin Neurophysiol

January 2025

Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA.

Objectives: (1) Gain insight into the mechanisms of postoperative delirium (POD). (2) Determine mechanistic overlap with post-ictal delirium (PID). Epilepsy patients undergoing intracranial electrophysiological monitoring can experience both POD and PID, and thus are suitable subjects for these investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!