Chronic Hypoxia Inhibits Respiratory Complex IV Activity and Disrupts Mitochondrial Dynamics in the Fetal Guinea Pig Forebrain.

Reprod Sci

Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.

Published: January 2022

Mitochondrial dysfunction is an underlying cause of childhood neurological disease secondary to the crucial role of mitochondria in proper neurodevelopment. We hypothesized that chronic intrauterine hypoxia (HPX) induces mitochondrial deficits by altering mitochondrial biogenesis and dynamics in the fetal brain. Pregnant guinea pigs were exposed to either normoxia (NMX, 21%O) or HPX (10.5%O) starting at 28-day (early onset, EO-HPX) or 50-day (late onset, LO-HPX) gestation until term (65 days). Near-term male and female fetuses were extracted from anesthetized sows, and mitochondria were isolated from excised fetal forebrains (n = 6/group). Expression of mitochondrial complex subunits I-V (CI-CV), fission (Drp-1), and fusion (Mfn-2) proteins was measured by Western blot. CI and CIV enzyme activities were measured by colorimetric assays. Chronic HPX reduced fetal body wts and increased (P < 0.05) brain/body wt ratios of both sexes. CV subunit levels were increased in EO-HPX males only and CII levels increased in LO-HPX females only compared to NMX. Both EO- and LO-HPX decreased CIV activity in both sexes but had no effect on CI activity. EO-HPX increased Drp1 and decreased Mfn2 levels in males, while LO-HPX had no effect on either protein levels. In females, both EO-HPX and LO-HPX increased Drp1 but had no effect on Mfn2 levels. Chronic HPX alters abundance and activity of select complex subunits and shifts mitochondrial dynamics toward fission in a sex-dependent manner in the fetal guinea pig brain. This may be an underlying mechanism of reduced respiratory efficiency leading to disrupted metabolism and increased vulnerability to a second neurological injury at the time of birth in HPX fetal brains.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43032-021-00779-wDOI Listing

Publication Analysis

Top Keywords

dynamics fetal
8
mitochondrial
5
chronic hypoxia
4
hypoxia inhibits
4
inhibits respiratory
4
respiratory complex
4
complex activity
4
activity disrupts
4
disrupts mitochondrial
4
mitochondrial dynamics
4

Similar Publications

Toxoplasmosis induced by Toxoplasma gondii is a well-known health threat, that prompts fatal encephalitis increased with immunocompromised patients, in addition, it can cause chorioretinitis, microcephaly, stillbirth in the fetus and even led to death. Standard therapy uses sulfadiazine and pyrimethamine drugs revealed beneficial results during the acute stage, however, it has severe side effects. UPLC-ESI-MS/MS used to explore C.

View Article and Find Full Text PDF

Background: Many pregnant individuals with opioid use disorder (OUD) spend time in jail, yet access to standard of care medications for OUD (MOUD) in jail is limited. Though qualitative studies of non-incarcerated pregnant and non-pregnant incarcerated individuals with OUD demonstrate complexities that must be considered in delivering effective care, studies with pregnant, incarcerated patients with OUD are lacking.

Methods: We conducted semi-structured qualitative interviews from October 2020-November 2021 with pregnant and postpartum people with OUD who were currently or previously in jail in Florida, Maryland, Ohio, and Virginia.

View Article and Find Full Text PDF

The tolerance and dynamic regulation of the maternal immune system during pregnancy are pivotal for ensuring fetal health. Immune cell subsets play a complex and crucial role in this process, closely linked to the neonatal health status. Despite recognizing the significance of dysregulation in the quantity and activity of immune cells in neonatal disease occurrence, their specific roles remain elusive, resulting in a dearth of clinically viable interventions for immune-mediated neonatal diseases.

View Article and Find Full Text PDF

Thyroid dysfunctions are common in type 1 diabetes mellitus (T1DM) pregnancies, impacting embryogenesis and fetal neurodevelopment. This study investigates the effects of subclinical hypothyroidism and BDNF (Brain-derived neurotrophic factor) telomere length in T1DM mothers and their newborns. In a recent study, researchers found an inverse relationship between TSH (thyroid-stimulating hormone) levels and telomere length in the cord blood of newborns.

View Article and Find Full Text PDF

The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!