A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prolonged hypoxia switched on cancer stem cell-like plasticity in HepG2 tumourspheres cultured in serum-free media. | LitMetric

Prolonged hypoxia switched on cancer stem cell-like plasticity in HepG2 tumourspheres cultured in serum-free media.

In Vitro Cell Dev Biol Anim

Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.

Published: October 2021

Tumour hypoxia drives resistance and aggressiveness, and in large part, contributes to treatment failure thereby causing cancer-related deaths. The rapid and uncontrolled tumour growth develops not only a hypoxic niche but also a nutrient-deprived condition due to insufficient blood supply; together, these create a stressful tumour niche, further promoting higher aggressiveness and resistance features of cancer. However, how cellular responses in the prolonged stress is associated with cancer stem cells (CSCs), which is linked to these features, remains unclear. Here, we established HepG2 tumoursphere culture in a hypoxic and serum-free condition that recapitulated differential responses to prolonged tumour growth pressures, evident by their progressive changes in the morphology of tumoursphere formation over a course of 15-day culture. HepG2 tumourspheres formed larger sphere sizes of > 200 μm in hypoxic conditions, concomitant with higher cell yield and upregulation of PCNA marker at day 7, corresponding with higher self-renewal capacity when cultured in SFM compared to SM. Notably, prolonged growth of HepG2 tumourspheres for 15 days under hypoxic and SFM condition increased their sphere counts, yet significantly reduced their cell yield along with downregulation of PCNA expression. Gene expression analysis showed that HepG2 tumourspheres on day 15 exhibited enhanced expression of markers of quiescence, stemness, EMT, and chemoresistance. Interestingly, analysis of HIF1α and HIF2α and their target gene expression indicated complementary HIF expression with preferential upregulation of HIF2α was observed in HepG2 tumourspheres in prolonged hypoxic and serum-free conditions, suggesting HIF2α-dependency and plausibility of the HIF1α-HIF2α switch that govern their survival by promoting CSC-like programmes. Altogether, these findings suggest the implication of prolonged hypoxia and nutrient deprivation stress in promoting CSC-like programmes in cancer cells recapitulating their plasticity, hence having opened many research directions that enable development of effective targeting of CSCs and precision medicine for treating cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-021-00625-yDOI Listing

Publication Analysis

Top Keywords

hepg2 tumourspheres
20
prolonged hypoxia
8
cancer stem
8
tumour growth
8
responses prolonged
8
hypoxic serum-free
8
cell yield
8
gene expression
8
promoting csc-like
8
csc-like programmes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!