Cohesin regulates homology search during recombinational DNA repair.

Nat Cell Biol

Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.

Published: November 2021

Homologous recombination repairs DNA double-strand breaks (DSB) using an intact dsDNA molecule as a template. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA filament assembled on each DSB end. Whether, how and to what extent a DSB impacts chromatin folding, and how this (re)organization in turns influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in Saccharomyces cerevisiae. Although cohesin folds chromosomes into cohesive arrays of ~20-kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during recombinational DNA repair.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41556-021-00783-xDOI Listing

Publication Analysis

Top Keywords

homology search
16
cohesin regulates
8
regulates homology
8
search recombinational
8
recombinational dna
8
dna repair
8
cohesin
6
dsb
5
homology
4
search
4

Similar Publications

Discovery of highly active kynureninases for cancer immunotherapy through protein language model.

Nucleic Acids Res

January 2025

School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Tailor-made enzymes empower a wide range of versatile applications, although searching for the desirable enzymes often requires high throughput screening and thus poses significant challenges. In this study, we employed homology searches and protein language models to discover and prioritize enzymes by their kinetic parameters. We aimed to discover kynureninases as a potentially versatile therapeutic enzyme, which hydrolyses L-kynurenine, a potent immunosuppressive metabolite, to overcome the immunosuppressive tumor microenvironment in anticancer therapy.

View Article and Find Full Text PDF

is a parasite transmitted by mosquitoes and can cause a neglected tropical disease called Lymphatic filariasis. However, the genome of was not well studied, making novel drug development difficult. This study aims to identify microRNA, annotate protein function, and explore the pathogenic mechanism of by genome-wide analysis.

View Article and Find Full Text PDF

DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair.

View Article and Find Full Text PDF

CAZymes ( C arbohydrate A ctive En Zymes ) degrade, synthesize, and modify all complex carbohydrates on Earth. CAZymes are extremely important to research in human health, nutrition, gut microbiome, bioenergy, plant disease, and global carbon recycling. Current CAZyme annotation tools are all based on sequence similarity.

View Article and Find Full Text PDF
Article Synopsis
  • Bacteria have various DNA repair mechanisms to keep their genomes intact, but identifying these proteins is tricky due to their similarities.
  • A new search strategy helps identify and analyze DNA repair proteins, particularly those involved in RecA-dependent homologous recombination, revealing common proteins like RecA and SSB across many species.
  • The study finds that some DNA repair proteins are often found alongside immune system components, suggesting a potential link, but no immune system is entirely dependent on a single DNA repair protein, indicating a complex relationship between these systems in bacteria.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!