A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anatomic accuracy, physiologic characteristics, and fidelity of very low birth weight infant airway simulators. | LitMetric

Background: Medical simulation training requires realistic simulators with high fidelity. This prospective multi-center study investigated anatomic precision, physiologic characteristics, and fidelity of four commercially available very low birth weight infant simulators.

Methods: We measured airway angles and distances in the simulators Premature AirwayPaul (SIMCharacters), Premature Anne (Laerdal Medical), Premie HAL S2209 (Gaumard), and Preterm Baby (Lifecast Body Simulation) using computer tomography and compared these to human cadavers of premature stillbirths. The simulators' physiologic characteristics were tested, and highly experienced experts rated their physical and functional fidelity.

Results: The airway angles corresponded to those of the reference cadavers in three simulators. The nasal inlet to glottis distance and the mouth aperture to glottis distance were only accurate in one simulator. All simulators had airway resistances up to 20 times higher and compliances up to 19 times lower than published reference values. Fifty-six highly experienced experts gave three simulators (Premature AirwayPaul: 5.1 ± 1.0, Premature Anne 4.9 ± 1.1, Preterm Baby 5.0 ± 1.0) good overall ratings and one simulator (Premie HAL S2209: 2.8 ± 1.0) an unfavorable rating.

Conclusion: The simulator physiology deviated significantly from preterm infants' reference values concerning resistance and compliance, potentially promoting a wrong ventilation technique.

Impact: Very low birth weight infant simulators showed physiological properties far deviating from corresponding patient reference values. Only ventilation with very high peak pressure achieved tidal volumes in the simulators, as aimed at in very low birth weight infants, potentially promoting a wrong ventilation technique. Compared to very low birth weight infant cadavers, most tested simulators accurately reproduced the anatomic angular relationships, but their airway dimensions were relatively too large for the represented body. The more professional experience the experts had, the lower they rated the very low birth weight infant simulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573578PMC
http://dx.doi.org/10.1038/s41390-021-01823-wDOI Listing

Publication Analysis

Top Keywords

low birth
24
birth weight
24
weight infant
20
physiologic characteristics
12
reference values
12
simulators
10
characteristics fidelity
8
airway angles
8
simulators premature
8
premature airwaypaul
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!