Polarization-dependent optical responses in natural 2D layered mineral teallite.

Sci Rep

Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA.

Published: November 2021

Multi-element layered materials enable the use of stoichiometric variation to engineer their optical responses at subwavelength scale. In this regard, naturally occurring van der Waals minerals allow us to harness a wide range of chemical compositions, crystal structures and lattice symmetries for layered materials under atomically thin limit. Recently, one type of naturally occurring sulfide mineral, ternary teallite has attained significant interest in the context of thermoelectric, optoelectronic, and photovoltaic applications, but understanding of light-matter interactions in such ternary teallite crystals is scarcely available. Herein, polarization-dependent linear and nonlinear optical responses in mechanically exfoliated teallite crystals are investigated including anisotropic Raman modes, wavelength-dependent linear dichroism, optical band gap evolution, and anisotropic third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of teallite crystal is estimated using the thickness-dependent THG emission process. We anticipate that our findings will open the avenue to a better understanding of the tailored light-matter interactions in complex multi-element layered materials and their implications in optical sensors, frequency modulators, integrated photonic circuits, and other nonlinear signal processing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575908PMC
http://dx.doi.org/10.1038/s41598-021-01511-zDOI Listing

Publication Analysis

Top Keywords

optical responses
12
layered materials
12
multi-element layered
8
naturally occurring
8
ternary teallite
8
light-matter interactions
8
teallite crystals
8
teallite
5
polarization-dependent optical
4
responses natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!