In this study, the effects of several structural and operational parameters affecting the separation efficiency of supersonic separators were investigated by numerical methods. Different turbulence models were used and their accuracies were evaluated. Based on the error analysis, the V2-f turbulence model was more accurate for describing the high swirling turbulent flow than other investigated turbulence models. Therefore, the V2-f turbulence model and particle tracing model were selected to optimize the structure of the convergence part, the diffuser, the drainage port, and the swirler. The cooling performance of three line-type in the convergent section were calculated. The simulation results demonstrated that the convergent section designed by the Witoszynski curve had higher cooling depth compared to the Bi-cubic and Quintic curves. Furthermore, the expansion angle of 2° resulted in the highest stability of fluid flow and therefore was selected in the design of the diffuser. The effect of incorporating the swirler and its structure on the separation performance of supersonic separator was also studied. Three different swirler types, including axial, wall-mounted, and helical, were investigated. It was observed that installing the swirler significantly improved the separation efficiency of the supersonic separator. In addition, the simulation results demonstrated that the separation efficiency was higher for the axial swirler compared to the wall-mounted and helical swirlers. Therefore, for the improved nozzle, the swirling flow was generated by the axial swirler. The optimized axial swirler was constructed from 12 arced vanes each of which had a swirl angle of 40°. For the optimized structure, the effects of operating parameters such as inlet temperature, pressure recovery ratio, density, and droplet size was also investigated. It was concluded that increasing the droplet size and density significantly improved the separation efficiency of the supersonic separator. For hydrocarbon droplets, the separation efficiency improved from 4.6 to 76.7% upon increasing the droplet size from 0.1 to 2 µm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575786 | PMC |
http://dx.doi.org/10.1038/s41598-021-01303-5 | DOI Listing |
Nat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry, Nankai University, Tianjin, China.
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China. Electronic address:
The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.
View Article and Find Full Text PDFBiotechnol Adv
January 2025
Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:
Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!