Background: Marine organisms are the potential contributors of novel bioactive molecules. Nevertheless, their biodiversity and the versatility of bioactive metabolites have not been fully explored. Hence, the aim of the present study was to investigate the potentials of gut associated bacteria from a marine crab for the production of novel antibacterial compound.

Methods: Aerobic gut autochthonous bacteria isolated from marine crab (Lissocarinus orbicularis) collected from Pazhayar coastal area in Nagapattinam district of Tamil Nadu, India were screened for antibacterial activity. Optimization for bacterial growth and antimicrobial compound production, extraction, purification and characterization were studied.

Results: In the present study, eight morphologically distinct colonies of L. orbicularis gut associated aerobic bacterial isolates (Iso1-Iso8) on Zobell marine agar plate were selected. Isolates were screened for antimicrobial activity against human bacterial pathogens such as Salmonella paratyphi, Vibrio cholera, Vibrio parahaemolyticus, Aeromonas hydrophila and Listeria monocytogenes. On the basis of screening results, isolate 5 (Iso5) was selected as the most potential strain and identified as Paenibacillus polymyxa using biochemical and 16S rRNA sequencing methods. The sequence data was submitted to NCBI (Gene bank Accession No: MK583465). Optimization of P. polymyxa for growth and antimicrobial compound production revealed incubation period (36 h), agitation (150 rpm), pH 8.0, 35 °C, 2.5% salinity, 2% glucose and 1% yeast extract as carbon and nitrogen sources respectively were the ideal conditions and mass culture was done with these parameters. Antimicrobial compound from the cell free supernatant of mass culture medium was extracted using ethanol. The lowest minimum inhibitory concentration (MIC) of 16 μg/ml was observed against of both V. parahaemolyticus and V. cholerae. GC-MS analysis of the active ethanol fraction showed the presence of different components such as dodecane (96.72%), Tridecane (1.69%), Undecane, 2,6-dimethyl- (1.69%), Tetradecane (1.12%) and Dodecane, 2,6,11-trimethyl- (1.12%).

Conclusion: The present study showed that the gut associated autochthonous bacteria of marine crabs are one of the potential sources of antibacterial compound. However, further studies are needed for the identification of the antimicrobial compound.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jiph.2021.10.003DOI Listing

Publication Analysis

Top Keywords

antimicrobial compound
16
gut associated
12
lissocarinus orbicularis
8
bacteria marine
8
marine crab
8
autochthonous bacteria
8
growth antimicrobial
8
compound production
8
mass culture
8
antimicrobial
6

Similar Publications

The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue.

View Article and Find Full Text PDF

Exploring Novel Antibiotics by Targeting the GroEL/GroES Chaperonin System.

ACS Pharmacol Transl Sci

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.

Infectious diseases have affected 13.7 million patients, placing a heavy burden on society. Furthermore, inappropriate and unrequited utilization of antibiotics has led to antimicrobial resistance worldwide.

View Article and Find Full Text PDF

The development and characterization of quaternary phosphonium compounds (QPCs) have long benefitted from their incorporation into a cornerstone reaction in organic synthesis - the Wittig reaction. These structures have, more recently, been developed into a wide variety of novel applications, ranging from phase transfer catalysis to mitochondrial targeting. Importantly, their antimicrobial action has demonstrated great promise against a wide variety of bacteria.

View Article and Find Full Text PDF

Introduction: In response to continued public health emergency of antimicrobial resistance (AMR), a significant key strategy is the discovery of novel mycobacterial efflux-pump inhibitors (EPIs) as potential adjuvants in combination drug therapy. Interest in identifying new chemotypes which could potentially synergize with the existing antibiotics and can be deployed as part of a combination therapy. This strategy could delay the emergence of resistance to existing antibiotics and increase their efficacy against resistant strains of mycobacterial species.

View Article and Find Full Text PDF

Initiation of chromosome replication is an essential stage of the bacterial cell cycle that is controlled by the DnaA protein. With the aim of developing novel antimicrobials, we have targeted the initiation of DNA replication, using antisense peptide nucleic acids (PNAs), directed against DnaA translation. A series of anti-DnaA PNA conjugated to lysine-rich bacterial penetrating peptides (PNA-BPPs) were designed to block DnaA translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!