Studies on platelet function in children older than neonatal period are few and their results are controversial. The pediatric platelets were alternatively reported to be more active or less active than adults' ones. We compared platelet function in the several age groups of children to adults and evaluated the age when platelet function reaches the adults' status. The study included 76 healthy children and 49 healthy adult volunteers. Types of platelet activation used included: collagen-related peptide (CRP) and PAR-1 activating peptide SFLLRN; SFLLRN, PAR-4 activating peptide AYPGKF and adenosine diphosphate (ADP); ADP. The parameters determined included forward (FSC) and side scatter (SSC), CD42b, CD61, CD62P, PAC-1, annexin V binding and mepacrine release levels. Resting pediatric platelets were similar to adults' platelets except for 1.2-fold decreased FSC and dense granules volume in youngest children, and 2.5-fold increased annexin V level in children aged 1-10 years. After CRP+SFLLRN stimulation, pediatric platelets had a 1.2-fold lower alpha- and 1.1-fold lower dense granule release than adults. For SFLLRN+AYPGKF+ADP stimulation, this was observed only for youngest children. The response to ADP stimulation was identical for pediatric platelets and adults. Pediatric platelets have lower granular release than adults' platelets, which persists until the age of 18.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09537104.2021.1981848DOI Listing

Publication Analysis

Top Keywords

pediatric platelets
24
adults' platelets
12
platelet function
12
platelets
9
activating peptide
8
platelets 12-fold
8
youngest children
8
children
6
adults'
5
pediatric
5

Similar Publications

Sepsis is a major cause of morbidity and mortality worldwide. Among the various types of end-organ damage associated with sepsis, hepatic injury is linked to significantly higher mortality rates compared to dysfunction in other organ systems. This study aimed to investigate potential biomarkers of hepatic injury in sepsis patients through a multi-center, case-control approach.

View Article and Find Full Text PDF

We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity.

View Article and Find Full Text PDF

Aims: Few personalized monitoring models for valproic acid (VPA) in pediatric epilepsy patients (PEPs) incorporate machine learning (ML) algorithms. This study aimed to develop an ensemble ML model for VPA monitoring to enhance clinical precision of VPA usage.

Methods: A dataset comprising 366 VPA trough concentrations from 252 PEPs, along with 19 covariates and the target variable (VPA trough concentration), was refined by Spearman correlation and multicollinearity testing (366 × 11).

View Article and Find Full Text PDF

Deciphering metabolic shifts in Gaucher disease type 1: a multi-omics study.

J Mol Med (Berl)

December 2024

Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France.

Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls.

View Article and Find Full Text PDF

Constitutional platelet disorders have become better understood since Bernard and Soulier first described a case in 1948. Their diagnosis can also be challenging due to overlap in clinical presentation and lab findings with platelet type von Willebrand. Bernard-Soulier syndrome is a disorder caused by GPIb receptor mutations that decrease its affinity for von Willebrand factor resulting in reduced platelet function and macrothrombocytopenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!