Microstructure of Al-40 wt%Si samples solidified in electromagnetic levitation furnace is studied at high melt undercooling. Primary Si with feathery and dendritic structures is observed. As this takes place, single Si crystals either contain secondary dendrite arms or represent faceted structures. Our experiments show that at a certain undercooling, there exists the microstructural transition zone of faceted to non-faceted growth. Also, we analyze the shape of dendritic crystals solidifying from liquid Si as well as from hypereutectic Al-Si melts at high growth undercoolings. The shapes of dendrite tips grown at undercoolings >100 K along the surface of levitated Al-40 wt%Si droplets are compared with pure Si dendrite tips from the literature. The dendrite tips are digitized and superimposed with theoretical shape function recently derived by stitching the Ivantsov and Brener solutions. We show that experimental and theoretical dendrite tips are in good agreement for Si and Al-Si samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac3792 | DOI Listing |
Curr Biol
January 2025
Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Microtubules (MTs) are intrinsically dynamic polymers. In neurons, staggered individual microtubules form stable, polarized acentrosomal MT arrays spanning the axon and dendrite to support long-distance intracellular transport. How the stability and polarity of these arrays are maintained when individual MTs remain highly dynamic is still an open question.
View Article and Find Full Text PDFTrends Pharmacol Sci
January 2025
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:
Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment landscape for hematological cancers. However, achieving comparable success in solid tumors remains challenging. Factors contributing to these limitations include the scarcity of tumor-specific antigens (TSAs), insufficient CAR-T cell infiltration, and the immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFTrends Pharmacol Sci
December 2024
Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:
Most solid tumors are insensitive to single-agent immunotherapy, calling for the development of combinatorial treatment regimens. Recently, Lin and collaborators developed a pharmacological platform enabling the combination of different immunotherapies into a single chemical entity. This approach may effectively circumvent obstacles associated with the simultaneous delivery of multiple immunotherapeutic agents.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Canada
Synaptic transmission from photoreceptors to ON-bipolar cells (BCs) requires the postsynaptic metabotropic glutamate receptor mGluR6, located at BC dendritic tips. Binding of the neurotransmitter glutamate initiates G protein signaling that regulates the TRPM1 transduction channel. mGluR6 also interacts with presynaptic ELFN adhesion proteins, and these interactions are important for mGluR6 synaptic localization.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China. Electronic address:
Melanoma treatment remains a challenge due to the inadequacy of existing clinical approaches and the difficulty of tissue regeneration. Recently, microneedles have been widely studied in tumor therapy and skin repair. Hence, a hyaluronic acid (HA)-based dual-functional hydrogel microneedle (MN) system was constructed to sequentially achieve tumor ablation and skin regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!