Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Backgrounds: Berberine (BBR), a compound long used in traditional Chinese medicine, has been reported to have therapeutic effects in treating ulcerative colitis (UC), attributed to its anti-inflammatory properties and restorative potential of tight junctions (TJs). However, the mechanism by which BBR affects intestinal bacteria and immunity is still unclear.
Methods: This study investigated the effects of BBR on intestinal bacteria and the inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice. Immunohistochemistry (IHC) and electron microscopy were used to detect intestinal TJs. Microflora analysis was used to screen for bacteria regulated by BBR.
Results: The results showed that BBR had increased colonic epithelium zonula occludens proteins-1 (ZO-1) and occludin expression and reduced T-helper 17/T regulatory ratio in DSS-induced mice. Mechanically, BBR eliminated DSS-induced intestinal flora disturbances in mice, particularly increased Bacteroides fragilis (B. fragilis) in vivo and in vitro. B. fragilis decreased the interleukin-6 induced by dendritic cells through some heat-resistant component rather than nucleic acids or proteins.
Conclusions: Overall, these data suggest that BBR had a moderating effect on DSS-induced colitis. This compound may regulate intestinal immune cell differentiation by affecting the growth of B. fragilis, providing new insights into the potential application of BBR in UC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2021.108329 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!