Does silicon really matter for the photosynthetic machinery in plants…?

Plant Physiol Biochem

Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976, Nitra, Slovak Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic. Electronic address:

Published: December 2021

Silicon (Si) is known to alleviate the adverse impact of different abiotic and biotic stresses by different mechanisms including morphological, physiological, and genetic changes. Photosynthesis, one of the most important physiological processes in the plant is sensitive to different stress factors. Several studies have shown that Si ameliorates the stress effects on photosynthesis by protecting photosynthetic machinery and its function. In stressed plants, several photosynthesis-related processes including PSII maximum photochemical quantum yield (Fv/Fm), the yield of photosystem II (φPSII), electron transport rates (ETR), and photochemical quenching (qP) were observed to be regulated when supplemented with Si, which indicates that Si effectively protects the photosynthetic machinery. In addition, studies also suggested that Si is capable enough to maintain the uneven swelling, disintegrated, and missing thylakoid membranes caused during stress. Furthermore, several photosynthesis-related genes were also regulated by Si supplementation. Taking into account the key impact of Si on the evolutionarily conserved process of photosynthesis in plants, this review article is focused on the aspects of silicon and photosynthesis interrelationships during stress and signaling pathways. The assemblages of this discussion shall fulfill the lack of constructive literature related to the influence of Si on one of the most dynamic and important processes of plant life i.e. photosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.11.004DOI Listing

Publication Analysis

Top Keywords

photosynthetic machinery
12
processes plant
8
photosynthesis
5
silicon matter
4
matter photosynthetic
4
machinery plants…?
4
plants…? silicon
4
silicon alleviate
4
alleviate adverse
4
adverse impact
4

Similar Publications

Growth-tolerance tradeoffs shape the survival outcomes and ecophysiological strategies of Atlantic Forest species in the rehabilitation of mining-impacted sites.

Sci Total Environ

January 2025

Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil. Electronic address:

The initial performance of seedlings of tree species from different functional groups, regarding the growth-defense tradeoff, might determine its long-term success during the rehabilitation of mining areas. We monitored the field performance of six native tree species of the Atlantic Forest in the Fundão dam tailing that has been under rehabilitation for 35 months. Additionally, we explored the morphophysiological traits driving the superior performance of three species.

View Article and Find Full Text PDF

Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.

View Article and Find Full Text PDF

The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.

View Article and Find Full Text PDF

Multi-Omics Research Reveals the Effects of the ABA-Regulated Phenylpropanoid Biosynthesis Pathway on the UV-B Response in Pall.

Plants (Basel)

January 2025

Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.

The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Pall. () to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences 's metabolic responses under UV-B stress.

View Article and Find Full Text PDF

Exogenous 2,4-Epibrassinolide Alleviates Alkaline Stress in Cucumber by Modulating Photosynthetic Performance.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Brassinosteroids (BRs) are recognized for their ability to enhance plant salt tolerance. While considerable research has focused on their effects under neutral salt conditions, the mechanisms through which BRs regulate photosynthesis under alkaline salt stress are less well understood. This study investigates these mechanisms, examining plant growth, photosynthetic electron transport, gas exchange parameters, Calvin cycle dynamics, and the expression of key antioxidant and Calvin cycle genes under alkaline stress conditions induced by NaHCO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!