An experimental investigation into the physical, thermal and mechanical degradation of a polymeric bioresorbable scaffold.

J Mech Behav Biomed Mater

Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland. Electronic address:

Published: January 2022

This study presents a comprehensive evaluation of the mechanical, micro-mechanical and physical properties of Reva Medical Fantom Encore Bioresorbable Scaffolds (BRS) subjected to a thermally-accelerated degradation protocol. The Fantom Encore BRS were immersed in phosphate buffered saline solution at 50 °C for 112 days with radial compression testing, nanoindentation, differential scanning calorimetry, gel permeation chromatography and mass loss characterisation performed at consecutive time points. In the initial stages of degradation (Days 0-21), the Fantom Encore BRS showed increases in radial strength and stiffness, despite a substantial reduction in in molecular weight, with a slight increase in the melt temperature also observed. In the second phase (Days 35-54), the radial strength of the BRS samples were maintained despite a continued loss in molecular weight. However, during this phase, the ductility of the stent showed a reduction, with stent fracture occurring earlier in the crimp process and with lower amounts of plastic deformation evident under visual examination post-fracture. In the final phase (Days 63-112), the load-bearing capacity of the Fantom Encore BRS showed continued reduction, with decreases in radial stiffness and strength, and drastic reduction in the work-to-fracture of the devices. Throughout each phase, there was a steady increase in the relative crystallinity, with limited mass loss until day 112 and only minor changes in glass transition and melt temperatures. Limited changes were observed in nano-mechanical properties, with measured local elastic moduli and hardness values remaining largely similar throughout degradation. Given that the thermally-accelerated in vitro conditions represented a four-fold acceleration of physiological conditions, these results suggest that the BRS scaffolds could exhibit substantially brittle behaviour after ∼ one year of implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2021.104955DOI Listing

Publication Analysis

Top Keywords

fantom encore
16
encore brs
12
mass loss
8
radial strength
8
molecular weight
8
phase days
8
brs
6
experimental investigation
4
investigation physical
4
physical thermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!