A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active sites decoration on sewage sludge-red mud complex biochar for persulfate activation to degrade sulfanilamide. | LitMetric

AI Article Synopsis

  • The study examines how different active sites on a catalyst surface influence the formation of oxidative species.
  • It utilizes sewage sludge-red mud complex biochar and its nitrogen-functionalized variant to activate peroxymonosulfate for breaking down sulfanilamide, achieving a high removal rate of 97.5% in 110 minutes.
  • The research highlights various degradation pathways and identifies specific nitrogen and carbon groups on the catalyst responsible for enhancing these reactions, demonstrating their significance for improving water treatment methods.

Article Abstract

Active sites on catalyst surface play significant roles in oxidative species formation. The work focused on the regulation of main active sites on catalyst surface and oxidative species formation. Herein, sewage sludge (SS)-red mud (RM) complex biochar (SRCB) and N-functionalized SRCB (NSRCB) were served as activators of peroxymonosulfate (PMS) for sulfanilamide (SMX) degradation. Specially, NSRCB-1 showed excellent catalytic performance with 97.5% removal of SMX within 110 min. Additionally, the effects of N incorporation on the reconstruction of N species, conversion of intrinsic Fe species and ketonic CO groups in SRCB were studied systematically. Both radical (hydroxyl radicals (OH), sulfate radicals (SO) and superoxide radical (O)) and non-radical (electron transfer and singlet oxygen (O)) pathways were confirmed by quenching experiments, electron paramagnetic resonance (EPR) testing and electrochemical measurements. Ketonic CO groups, pyridinic N and pyrrolic N were responsible for non-radical pathway in SMX degradation process. Besides, Fe(II) modulated by N-doping was the main actives site for radicals generation. The contribution of active sites on catalyst surface to oxidative species formation provided fundamental basis for practical water treatment in PMS process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.10.150DOI Listing

Publication Analysis

Top Keywords

active sites
16
sites catalyst
12
catalyst surface
12
oxidative species
12
species formation
12
mud complex
8
complex biochar
8
surface oxidative
8
smx degradation
8
ketonic groups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!