Cost-effective and portable MRI systems operating at Earth-field would be helpful in poorly accessible areas or in developing nations. Furthermore Earth-field MRI can provide new contrasts opening the way to the observation of pathologies at the biochemical level. However low-field MRI suffers from a dramatic lack in detection sensitivity even worsened for molecular imaging purposes where biochemical specificity requires detection of dilute compounds. In a preliminary spectroscopic approach, it is proposed here to detect protease-driven hydrolysis of a nitroxide probe thanks to electron-nucleus Overhauser enhancement in a home-made double resonance system in Earth-field. The combination of the Overhauser effect and the specific enzymatic modification of the probe provides a smart contrast reporting the enzymatic activity. The nitroxide probe is a six-line nitroxide which lines are shifted according to its substrate/product state, which requires quantum mechanical calculations to predict EPR line frequencies and Overhauser enhancements at Earth field. The NMR system is equipped with a 13-mT prepolarization coil, a 153-MHz EPR coil and a 2-kHz NMR coil. Either prepolarized NMR or DNP-NMR without prepolarization provide NMR spectra within 3 min. The frequency dependence of Overhauser enhancement was in agreement with theoretical calculations. Protease-mediated catalysis of the nitroxide probe could only be measured through the Overhauser effect with 5 min time resolution. Future developments shall open the way for the design of new low-field DNP-MRI systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2021.107095DOI Listing

Publication Analysis

Top Keywords

nitroxide probe
12
enzymatic activity
8
overhauser enhancement
8
overhauser
5
activity monitoring
4
monitoring dynamic
4
dynamic nuclear
4
nuclear polarization
4
polarization earth
4
earth magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!