Thiamethoxam (TMX), a representative neonicotinoids, is widely used for seed coating. The consumption of TMX-coated seeds posed threat to birds during crop sowing. The hepatotoxicity of TMX has been reported in mammals, however, no clear evidence showed TMX-induced toxic effects on bird liver. In this study, male Japanese quails (Coturnix japonica) were exposed to 20 or 200 mg/kg TMX-treated bird feed for 28 days. Results showed that Clothianidin (CLO), a TMX metabolite preferred to accumulate in quail plasma and liver, and inflammatory cell infiltration was found in quail livers. Oxidative stress-related biological processes were significantly enriched in both TMX treatment groups through transcriptomics analysis. Moreover, integrative analysis of transcriptomics and metabolomics indicated ferroptosis and DNA damage was implicated in hepatotoxicity caused by high- and low-concentration of TMX exposure, respectively. High-dose TMX treatment decreased CAT activity and GSH concentration and increased expression of the ferroptosis-related gene. In addition, the up-regulation of 8-OHdG concentration and DNA repair-related genes expression demonstrated low-dose TMX triggered oxidative DNA damage. The present results highlight the toxicity of TMX to bird livers and contribute to a better understanding of the TMX toxic mechanism in birds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.118460 | DOI Listing |
Environ Res
January 2025
Department of Chemistry, University college in Al-Jamoum, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
Accurate quantification of neonicotinoid insecticides is pivotal to ensure environmental safety by examining and mitigating their potential harmful effects on pollinators and aquatic ecosystems. In this scenario, detection of neonicotinoid insecticide, thiamethoxam (TMX), is significant for safeguarding ecological balance and human health. Hence, we developed a highly sensitive electrochemical sensor for detection of TMX in environmental samples, utilizing a novel nanocomposite with superior electrocatalytic properties and integrating an optimized neural network for accurate data analysis.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Botany, GDC-Pulwama-192301, Jammu and Kashmir, India. Electronic address:
The present study uncovers the impacts of pesticide-thiamethoxam (TMX- 750 mg L) and salicylic acid (SA- 0.01, 0.1 and 1 mM) in Brassica juncea L.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States; State Key Laboratory of Tea Plant Biology and Utilization; School of Tea Science, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
Misuse of insecticides such as thiamethoxam (TMX) not only affects the quality of tea but also leaves residues in tea. Therefore, exploring the metabolic mechanisms of TMX in tea plants can evaluate effects of pesticides on the environment and human health. Here, effects of TMX on tea plants were studied.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China. Electronic address:
Background: Neonicotinoids (NEOs) are well-designed highly selective pesticides that target nicotinic acetylcholine receptors. However, their extensive use, accumulation, and biomagnification pose significant risks to humans. Increasing evidence has suggested that NEOs may affect glucose homeostasis, but little research has linked NEOs exposure to gestational diabetes mellitus (GDM), which is the most common disease in pregnancy.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
College of Resources and Environment, Southwest University, Tian Shen Road, Beibei District, Chongqing 400799, China; Department of Environmental and Occupational Health Sciences, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA. Electronic address:
In order to better understand the environmental impact of systemic pesticides used in the seed treatment, we conducted a field trial by planting maize seeds treated with thiamethoxam (TMX) and the combination with difenoconazole (DFZ), two of the commonly used systemic pesticides in the seed treatment program. We found most of pesticide residues were retained in the 0-10 cm layer from soil surface. Pesticide residue levels exhibited a significant decreasing trend from the seedling to milk period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!