The Rehabilitation Treatment Specification System (RTSS) was developed as a systematic way to describe rehabilitation treatments for the purpose of both research and practice. The RTSS groups treatments by type and describes them by 3 elements: the treatment (1) ingredients and (2) the mechanisms of action that yield changes in the (3) target behavior. Adopting the RTSS has the potential to improve consistency in research, allowing for better cross-study comparisons to strengthen the body of research supporting various treatments. Because it is still early in its development, the RTSS has not yet been widely implemented across different rehabilitation disciplines. In particular, aphasia recovery is one area of rehabilitation that could benefit from a unifying framework. Accordingly, this article is part of a series where we illustrate how the RTSS can be applied to aphasia treatment and research. This article more specifically focuses on examining the neurobiological mechanisms of action associated with experimental aphasia therapies, including brain stimulation and pharmacologic intervention, as well as more traditional behavioral therapy. Key elements of the RTSS are described, and 4 example studies are used to illustrate how the RTSS can be implemented. The benefits of a unifying framework for the future of aphasia treatment research and practice are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apmr.2021.10.017 | DOI Listing |
PLoS One
December 2024
Animal Science Department, Universidad Nacional de Colombia, Palmira Valle, Colombia.
The association of parasites and diatoms has been previously reported as an important mechanism to control bacteria and parasites to avoid resistance to chemical usage. The aim of this study was to investigate the association between diatoms genus and parasites within the gastrointestinal compartments (GICs) of commercial fish in fisheries of the marine Pacific coast of Colombia (Buenaventura). A total of 104 GICs from marine fish were sampled.
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.
View Article and Find Full Text PDFMol Divers
December 2024
Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China.
Natural compounds' derivatives as lead structures could effectively solve plant disease problems. In this article, amide compounds and amide ester compounds were synthetized through ferulic acid as the parent nucleus structure, and their biological activities in vitro and in vivo were evaluated. Compound 1q was screened out as the one with the best activity performance toward Xanthomonas axonopodis pv.
View Article and Find Full Text PDFJ Mol Neurosci
December 2024
Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.
Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.
View Article and Find Full Text PDFSynapse
January 2025
Department of Biochemistry & Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh.
Sesamol (SES) and linalool (LIN) are aromatic compounds that have neuroprotective effects. The main purpose of this study is to evaluate the anxiolytic activity of LIN and SES co-treatment on Swiss albino mice and analyze its possible mechanism through in silico study. In this sense, the mice were given the gamma-aminobutyric acid type A receptors (GABA) agonist diazepam (DZP; 3 mg/kg, p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!