A next-generation gas chromatograph-molecular rotational resonance (MRR) spectrometer (GC-MRR) with instrumental improvements and higher sensitivity is described. MRR serves as a structural information-rich detector for GC with extremely narrow linewidths and capabilities surpassing H nuclear magnetic resonance/Fourier transform infrared spectroscopy/mass spectrometry (MS) while offering unparalleled specificity in regard to a molecule's three-dimensional structure. With a Fabry-Pérot cavity and a supersonic jet incorporated into a GC-MRR, dramatic improvements in sensitivity for molecules up to 244 Da were achieved in the microwave region compared to the only prior work, which demonstrated the GC-MRR idea for the first time with millimeter waves. The supersonic jet cools the analytes to ∼2 K, resulting in a limited number of molecular rotational and vibrational levels and enabling us to obtain stronger GC-MRR signals. This has allowed the limits of detection of the GC-MRR to be comparable to a GC thermal conductivity detector with an optimized choice of gases. The performance of this GC-MRR system is reported for a range of molecules with permanent dipole moments, including alcohols, nitrogen heterocyclics, halogenated compounds, dioxins, and nitro compounds in the molecular mass range of 46-244 Da. The lowest amount of any substance yet detected by MRR in terms of mass is reported in this work. A theoretically unexpected finding is reported for the first time about the effect of the GC carrier gas (He, Ne, and N) on the sensitivity of the analysis in the presence of the gas driving the supersonic jet (He, Ne, and N) in the GC-MRR. Finally, the idea of total molecule monitoring in the GC-MRR analogous to selected ion monitoring in GC-MS is illustrated. Structural isomers and isotopologues of bromobutanes and bromonitrobenzenes are used to demonstrate this concept.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727982 | PMC |
http://dx.doi.org/10.1021/acs.analchem.1c03710 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, Tennessee Tech University, Cookeville, Tennessee 38505, USA.
The first ground-state rotational spectrum of 3-methylstyrene (3MS) was measured by Fourier transform microwave spectroscopy under supersonic jet-cooled conditions. Transitions were assigned for two conformers: cis-3MS and trans-3MS. In the cis conformer, the vinyl group is oriented toward the methyl group, while in the trans conformer, it is positioned away from the methyl.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France.
(1,2)--Aminoindanol and (1,2)--aminoindanol, denoted as -AI and -AI, are diastereoisomer aromatic aminoalcohols differing by the presence of a weak intramolecular hydrogen bond in -AI, which is absent in -AI. They also differ by the number of conformers under supersonic jet conditions, one for -AI and two for -AI. One-photon and resonance-enhanced two-photon photoelectron circular dichroism (PECD) spectra are obtained for the two molecules.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.
Spectra of the weakly bound H2O-O2 dimer are studied in the region of the H2O ν2 band using a tunable quantum cascade laser to probe a pulsed supersonic slit jet expansion. These are the first gas-phase infrared spectra of H2O-O2 and among only a few such results for O2-containing complexes. Almost 100 infrared lines are assigned based on the ground state combination differences from the microwave spectrum of H2O-O2.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
This investigation presents extensive computational analyses of the compressible flow near ramp injector with double circular injectors at supersonic combustor of scramjet engine. Comparison of the fuel mixing and fuel jet penetration of hydrogen jet are done for two injector configurations at free stream Mach number of 2. The simulation of the supersonic flow near ramp injector is done via solving RANS equations with computational fluid dynamic technique.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry G. Ciamician, University of Bologna, 40126 Bologna, Italy.
The rotational spectrum of 2'-hydroxyacetophenone has been recorded and assigned for the first time using a Stark-modulated free-jet absorption millimeter-wave (FJ-AMMW) spectrometer in the 59.6-74.5 GHz frequency range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!