Molecular insights into the urea-choline--sulfate interactions in aqueous solution.

Phys Chem Chem Phys

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.

Published: November 2021

Urea and choline--sulfate (COS) are both osmolytes, but have opposite effects on protein structure. Urea has been well-known for years to destabilize protein structure. Though COS has been revealed as an osmoprotective molecule against urea induced denaturation of proteins, the mechanism of this compensation is still unexplored. This study focuses on a theoretical investigation of the interdependent behavior of urea and COS in a mixture, to explore how urea becomes a weaker denaturing agent in the presence of COS. In this study, we have considered every possible interaction among the solute (urea and COS) and solvent (water) both at room temperature and high temperature, employing two different force field parameters , CHARMM General Force Field parameters (CGenFF) and General AMBER Force Field (GAFF) parameters through classical molecular dynamics simulation studies. Different techniques have been used to analyze the average interactions between COS and urea as well as their solvation properties, which show that in the presence of COS, urea becomes a less effective denaturant than when alone. The water-water interaction shows that the mixed osmolyte solution of urea and COS strengthens the water hydrogen bonding network. The enhanced solvation of urea and COS in the urea-COS mixture and their mutual interactions, results in the exclusion of free urea as well as COS from the solution. This synergistic behavior of urea and COS could be the major reason behind COS counteracting urea's denaturation of proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp02821aDOI Listing

Publication Analysis

Top Keywords

urea cos
20
urea
12
cos
12
force field
12
solution urea
8
protein structure
8
denaturation proteins
8
behavior urea
8
presence cos
8
field parameters
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!