Tumor-derived exosomal miRNAs may have important functions in the onset and progression of cancers and are potential biomarkers for early diagnosis and prognosis monitoring. Yet, simple, sensitive, and label-free detection of exosomal miRNAs remains challenging. Herein, an ultrasensitive, label-free, and stable field-effect transistor (FET) biosensor based on a polymer-sorted high-purity semiconducting carbon nanotube (CNT) film is reported to detect exosomal miRNA. Different from conventional CNT FETs, the CNT FET biosensors employed a floating gate structure using an ultrathin YO as an insulating layer, and assembled Au nanoparticles (AuNPs) on YO as linkers to anchor probe molecules. A thiolated oligonucleotide probe was immobilized on the AuNP surface of the sensing area, after which miRNA21 was detectable by monitoring the current change before and after hybridization between the immobilized DNA probe and target miRNA. This method achieved both high sensitivity (LOD: 0.87 aM) and high specificity. Furthermore, the FET biosensor was employed to test clinical plasma samples, showing significant differences between healthy people and breast cancer patients. The CNT FET biosensor shows the potential applications in the clinical diagnosis of breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c03573DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
fet biosensor
12
carbon nanotube
8
field-effect transistor
8
ultrasensitive label-free
8
label-free detection
8
exosomal mirnas
8
cnt fet
8
nanotube field-effect
4
biosensor
4

Similar Publications

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast Cancer Res Treat

January 2025

Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.

Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.

Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

Purpose: Aromatase inhibitor-associated musculoskeletal symptoms (AIMSS) are the most common adverse effects experienced by breast cancer patients. This scoping review aimed to systematically synthesize the predictors/risk factors and outcomes of AIMSS in patients with early-stage breast cancer.

Methods: A systematic search was conducted in PubMed, Web of Science, EMBASE, CINAHL, and the China National Knowledge Internet (CNKI) from inception to December 2024 following the scoping review framework proposed by Arksey and O'Malley (2005).

View Article and Find Full Text PDF

Prognosis of Implant-Based Breast Reconstruction After Mastectomy Flap Necrosis: Predictors of Failure and Salvage.

Aesthetic Plast Surg

January 2025

Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

Background: In the realm of implant-based breast reconstruction, mastectomy flap necrosis (MFN) is a prevalent yet grave complication that poses a threat to the stability of the inserted prosthesis. Although numerous investigations have scrutinized the risk factors for MFN development, few have delved into the aftermath, specifically implant failure or salvage. This study seeks to appraise the prognosis of the implanted prosthesis following MFN occurrence, as well as identify predictors of such outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!