Characterization of substituted piperazines able to reverse MDR in Escherichia coli strains overexpressing resistance-nodulation-cell division (RND) efflux pumps.

J Antimicrob Chemother

Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmaceutical and Nutraceutical Sciences, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy.

Published: February 2022

Background: MDR in bacteria is threatening to public health. Overexpression of efflux pumps is an important cause of MDR. The co-administration of antimicrobial drugs and efflux pump inhibitors (EPIs) is a promising approach to address the problem of MDR.

Objectives: To identify new putative EPIs and to characterize their mechanisms of action.

Methods: The effects of four selected piperazine derivatives on resistance-nodulation-cell division (RND) pumps was evaluated in Escherichia coli strains overexpressing or not expressing RND pumps by assays aimed at evaluating antibiotic potentiation, membrane functionality, ethidium bromide accumulation and AcrB expression. The cytotoxicity of selected piperazines towards primary cultures of human dermal fibroblasts was also investigated.

Results: Four molecules enhanced levofloxacin activity against strains overexpressing RND efflux pumps (AcrAB-TolC and AcrEF-TolC), but not against RND pump-deficient strains. They had little effects on membrane potential. Molecule 4 decreased, whereas the other three increased, membrane permeability compared with untreated control cells. The four molecules showed differences in the specificity of interaction with RND efflux pumps, by inactivating the transport of one or more antibiotics, and in the levels of ethidium bromide accumulation and of acrB expression inhibition.

Conclusions: Piperazine derivatives are good candidates as inhibitors of RND efflux pumps. They decreased the activity of RND pumps by mixed mechanisms of action. Small structural differences among the molecules can be critical in defining their behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkab388DOI Listing

Publication Analysis

Top Keywords

efflux pumps
20
rnd efflux
16
strains overexpressing
12
rnd pumps
12
escherichia coli
8
coli strains
8
resistance-nodulation-cell division
8
rnd
8
division rnd
8
pumps
8

Similar Publications

Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches.

ACS Infect Dis

January 2025

Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.

The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency.

View Article and Find Full Text PDF

Mechanisms of thermal, acid, desiccation and osmotic tolerance of spp.

Crit Rev Food Sci Nutr

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.

View Article and Find Full Text PDF

The increasing antibiotic resistance in Pseudomonas aeruginosa, responsible for both community-acquired and hospital-acquired infections, is of global significance. The primary mechanisms contributing to resistance development in P.aeruginosa include the increased activity of efflux pumps, decreased permeability of outer membrane porins and the production of carbapenemases.

View Article and Find Full Text PDF

Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets.

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!