Immunoglobulin G (IgG) molecules modulate an immune response. However, site-specific -glycosylation signatures of plasma IgG in patients with chronic kidney disease (CKD) remain unclear. This study aimed to propose a novel method to explore the -glycosylation pattern of IgG and to compare it with reported methods. We separated human plasma IgG from 58 healthy controls (HC) and 111 patients with CKD. Purified IgG molecules were digested by trypsin. Tryptic peptides without enrichment of intact -glycopeptides were analyzed using a combination of electron-transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) mass spectrometry (EThcD-sceHCD-MS/MS). This resulted in higher spectral quality, more informative fragment ions, higher Byonic score, and nearly twice the depth of intact -glycopeptide identification than sceHCD or EThcD alone. Site-specific -glycosylation mapping revealed that intact -glycopeptides were differentially expressed in HC and CKD patients; thus, it can be a diagnostic tool. This study provides a method for the determination of glycosylation patterns in CKD and a framework for understanding the role of IgG in the pathophysiology of CKD. Data are available ProteomeXchange with identifier PXD027174.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1an01657a | DOI Listing |
Clin Nephrol Case Stud
December 2024
Nephrology Center and the Okinaka Memorial Institute for Medical Research.
A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.
View Article and Find Full Text PDFGenes Immun
January 2025
Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
Immunoglobulin GM (γ marker) and KM (κ marker) allotypes-encoded by immunoglobulin heavy chain G (IGHG) and immunoglobulin κ constant (IGKC) genes-have been shown to be associated with immune responsiveness to a variety of self and nonself antigens. The aim of the present investigation was to determine whether allelic variation at the GM and KM loci was associated with antibody responsiveness to poly-N-acetyl-D-glucosamine (PNAG), a broadly-conserved surface polysaccharide expressed by many microbial pathogens. In addition, we wished to determine whether Fcγ receptor 2 A (FCGR2A) genotypes, which have been shown to be risk factors for some pathogens, also influenced antibody responses to PNAG.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain.
In the past decade, a major goal in biomedical research has been to understand why individuals differ in disease susceptibility, disease dynamics, and progression. In many pathologies, this variability stems from evolved immune mechanisms that resist inflammatory stress from various diseases that have been encountered throughout life. These may provide advantages against other diseases, reduce comorbidities, and enhance longevity.
View Article and Find Full Text PDFViruses
December 2024
Department of Internal Medicine, College of Medicine, Chosun University, Gwangju 61453, Republic of Korea.
Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.
View Article and Find Full Text PDFViruses
November 2024
C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
SARS-CoV-2 infection induces a humoral immune response, producing virus-specific antibodies such as IgM, IgG, and IgA. IgA antibodies are present at mucosal sites, protecting against respiratory and other mucosal infections, including SARS-CoV-2, by neutralizing viruses or impeding attachment to epithelial cells. Since SARS-CoV-2 spreads through the nasopharynx, the specific IgAs of SARS-CoV-2 are produced quickly after infection, effectively contributing to virus neutralization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!