Treatment effect heterogeneity occurs when individual characteristics influence the effect of a treatment. We propose a novel approach that combines prognostic score matching and conditional inference trees to characterize effect heterogeneity of a randomized binary treatment. One key feature that distinguishes our method from alternative approaches is that it controls the Type I error rate, that is, the probability of identifying effect heterogeneity if none exists and retains the underlying subgroups. This feature makes our technique particularly appealing in the context of clinical trials, where there may be significant costs associated with erroneously declaring that effects differ across population subgroups. Treatment effect heterogeneity trees are able to identify heterogeneous subgroups, characterize the relevant subgroups and estimate the associated treatment effects. We demonstrate the efficacy of the proposed method using a comprehensive simulation study and illustrate our method using a nutrition trial dataset to evaluate effect heterogeneity within a patient population.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09622802211052831DOI Listing

Publication Analysis

Top Keywords

heterogeneity randomized
8
conditional inference
8
inference trees
8
treatment heterogeneity
8
treatment
6
heterogeneity
5
assessing heterogeneity
4
randomized treatment
4
treatment conditional
4
trees treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!