Although podophyllotoxin (POD) demonstrates high efficiency to inhibit various cancers, its clinic application is limited to poor bioavailability. Nanoparticles derived from homodimeric prodrugs with high drug loading potential are emerging as promising nanomedicines. However, complete intracellular drug release remains a major hindrance to the use of homodimeric prodrugs-based nanomedicine. We sought to develop a reactive oxygen species (ROS) responsive POD dimeric prodrug by incorporating vitamin K3 (VK3) and Pluronic F127 to synthesize a spheroid nanoparticle (PTV-NPs). PTV-NPs with high POD content could release drugs under the ROS enrichment microenvironment in cancer cells. The released VK3 could produce abundant ROS selectively in tumor cells catalyzed by the overexpressed NAD(P)H: quinone oxidoreductase-1 (NQO1) enzyme. In turn, the resultant high ROS concentration promoted the conversion of POD dimeric prodrug to POD monomer, thereby achieving the selective killing of cancer cells with weak system toxicity. and studies consistently confirmed that PTV-NPs exhibit high drug loading potential and upstanding bioavailability. They are also effectively internalized by tumor cells, induce abundant intracellular ROS generation, and have high tumor-specific cytotoxicity. This ROS-responsive dimeric prodrug nanoplatform characterized by selective self-amplification drug release may hold promise in the field of antitumor drug delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583822 | PMC |
http://dx.doi.org/10.1080/10717544.2021.1995076 | DOI Listing |
NPJ Vaccines
January 2025
Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
Tumor-derived exosomes (TDEs) mediate oncogenic communication, which modifies target cells to reinforce a tumor-promoting microenvironment. TDEs support cancer progression by suppressing anti-tumor immune responses, promoting metastasis, and conferring drug resistance. Thus, targeting TDEs could improve the efficacy of anti-cancer treatments and control metastasis.
View Article and Find Full Text PDFJ Adv Res
January 2025
Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Afliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China. Electronic address:
Introduction: Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.
Objectives: To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).
Int J Pharm
January 2025
Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:
The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:
Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!