The avoidance and mitigation of energy wastage have attracted increasing attention in the context of global warming and climate change. With advances in materials science, diverse multifunctional materials with high thermal conductivity have shown excellent energy-saving potential. In this study, a hybrid film exhibiting high thermal conductivity with excellent stretchability and washability was prepared. First, a simple surface modification of boron nitride (BN) was performed to realize a modified boron nitride (BNOH) filler. Next, an organic dispersant was synthesized to enhance the dispersion of BNOH and graphene nanoplatelets (GNPs) in the proposed composite. Subsequently, a simple procedure was used to combine the dispersed GNPs and BNOH fillers with thermoplastic polyurethane (TPU) to fabricate a hybrid structure. The hybrid films composed of BNOH-GNP/TPU with a dispersant exhibited a high thermal conductivity of 12.62 W m K at a low filler loading of 20 wt.%. This hybrid film afforded excellent stretchability and washability, as indicated by the very small thermal-conductivity reduction to only 12.23 W m K after 100 cycles of fatigue testing and to 12.01 W m K after 10 washing cycles. Furthermore, the cooling and hydrophobicity properties of the hybrid film were enhanced when compared with neat TPU. Overall, our approach demonstrates a simple and novel strategy to break the passive effect of traditional commercial cooling clothing by combining a high-thermal-conductivity film with an active cooling source to amplify the cooling effect and develop wearable cooled smart clothes with great commercial potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567374PMC
http://dx.doi.org/10.1021/acsomega.1c03496DOI Listing

Publication Analysis

Top Keywords

high thermal
12
thermal conductivity
12
hybrid film
12
thermoplastic polyurethane
8
cooled smart
8
smart clothes
8
conductivity excellent
8
excellent stretchability
8
stretchability washability
8
boron nitride
8

Similar Publications

Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.

View Article and Find Full Text PDF

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Radiative Warming Glass for High-Latitude Cold Regions.

Adv Sci (Weinh)

January 2025

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.

Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.

View Article and Find Full Text PDF

On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features.

Adv Sci (Weinh)

January 2025

College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.

The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.

View Article and Find Full Text PDF

Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!