Human-Robot Collaboration (HRC) has the potential for a paradigm shift in industrial production by complementing the strengths of industrial robots with human staff. However, exploring these scenarios in physical experimental settings is costly and difficult, e.g., due to safety considerations. We present a virtual reality application that allows the exploration of HRC work arrangements with autonomous robots and their effect on human behavior. Prior experimental studies conducted using this application demonstrated the benefits of augmenting an autonomous robot arm with communication channels on subjective aspects such as perceived stress. Motivated by current safety regulations that hinder HRC to expand its full potential, we explored the effects of the augmented communication on objective measures (collision rate and produced goods) within a virtual sandbox application. Explored through a safe and replicable setup, the goal was to determine whether communication channels that provide guidance and explanation on the robot can help mitigate safety hazards without interfering with the production effectiveness of both parties. This is based on the theoretical foundation that communication channels enable the robot to explain its action, helps the human collaboration partner to comprehend the current state of the shared task better, and react accordingly. Focused on the optimization of production output, reduced collision rate, and increased perception of safety, a between-subjects experimental study with two conditions (augmented communication vs non-augmented) was conducted. The results revealed a statistically significant difference in terms of production quantity output and collisions with the robot, favoring the augmented conditions. Additional statistically significant differences regarding self-reported perceived safety were found. The results of this study provide an entry point for future research regarding the augmentation of industrial robots with communication channels for safety purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565464 | PMC |
http://dx.doi.org/10.3389/frobt.2021.728961 | DOI Listing |
J Inflamm Res
December 2024
Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People's Republic of China.
Background: Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research.
Methods: We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis.
J Med Imaging (Bellingham)
January 2025
Okaya City Hospital, Division of Diagnostic Pathology, Okaya, Japan.
Purpose: The color of Papanicolaou-stained specimens is a crucial feature in cytology diagnosis. However, the quantification of color using digital images is challenging due to the variations in the staining process and characteristics of imaging equipment. The dye amount estimation of stained specimens is helpful for quantitatively interpreting the color based on a physical model.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Economics and Management, China University of Geosciences (Beijing), Beijing, 100083, PR China. Electronic address:
The provision of digital infrastructure and affordable energy for households is an important direction for improving the living conditions of the population. The link between digital infrastructure development and affordable energy should be examined if multiple sustainable development goals are to be achieved simultaneously for the residential sector. This study employs a staggered difference-in-differences model to investigate the effect of digital infrastructure development on household energy consumption expenditure (HECE) by using the Broadband China Strategy as an example.
View Article and Find Full Text PDFSci Rep
December 2024
School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.
View Article and Find Full Text PDFSci Rep
December 2024
National University of Defense Technology, Changsha, Hunan, China.
In-band full-duplex communication has the potential to double the wireless channel capacity. However, how to efficiently transform the full-duplex gain at the physical layer into network throughput improvement is still a challenge, especially in dynamic communication environments. This paper presents a reinforcement learning-based full-duplex (RLFD) medium access control (MAC) protocol for wireless local-area networks (WLANs) with full-duplex access points.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!