Malignant melanoma (MM) is the most lethal skin cancer. AXL is a tyrosine kinase receptor involved in several oncogenic processes and might play a role in blocking necroptosis (a regulated cell death mechanism) in MM through the downregulation of the necroptotic-related driver RIPK3. The aim of this study was to evaluate the clinical impact of the expression of AXL and RIPK3 in 108 primary cutaneous MMs. Association between AXL and RIPK3 immunoreactivity and clinical-pathological variables, sentinel lymph node status, and tumor-infiltrating lymphocytes (TILs) was assessed. Immunoreaction in tumor cells was detected in 30 cases (28%; range, 5%-80%) and in 17 cases (16%; range, 5%-50%) for AXL and RIPK3, respectively. Metastases in the sentinel lymph nodes were detected in 14 out of 61 patients, and these were associated with AXL-positive immunoreactivity in the primary tumor (p < 0.0001). No association between AXL and TILs was found. RIPK3 immunoreactivity was not associated with any variables. A final logistic regression analysis showed Breslow and AXL-positive immunoreactivity as the stronger predictor for positive sentinel node status [area under the receiver operating characteristic curve (AUC) of 0.96]. AXL could be a potential new biomarker for MM risk assessment, and it deserves to be further investigated in larger studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566987PMC
http://dx.doi.org/10.3389/fonc.2021.728319DOI Listing

Publication Analysis

Top Keywords

axl ripk3
12
primary cutaneous
8
sentinel node
8
association axl
8
ripk3 immunoreactivity
8
sentinel lymph
8
node status
8
axl-positive immunoreactivity
8
axl
7
ripk3
6

Similar Publications

Malignant melanoma (MM) is the most lethal skin cancer. AXL is a tyrosine kinase receptor involved in several oncogenic processes and might play a role in blocking necroptosis (a regulated cell death mechanism) in MM through the downregulation of the necroptotic-related driver RIPK3. The aim of this study was to evaluate the clinical impact of the expression of AXL and RIPK3 in 108 primary cutaneous MMs.

View Article and Find Full Text PDF

TAM Kinases Promote Necroptosis by Regulating Oligomerization of MLKL.

Mol Cell

August 2019

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Necroptosis, a cell death pathway mediated by the RIPK1-RIPK3-MLKL signaling cascade downstream of tumor necrosis factor α (TNF-α), has been implicated in many inflammatory diseases. Members of the TAM (Tyro3, Axl, and Mer) family of receptor tyrosine kinases are known for their anti-apoptotic, oncogenic, and anti-inflammatory roles. Here, we identify an unexpected role of TAM kinases as promoters of necroptosis, a pro-inflammatory necrotic cell death.

View Article and Find Full Text PDF

Necroptosis is a lytic programmed cell death mediated by the RIPK1-RIPK3-MLKL pathway. The loss of Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) expression and necroptotic potential have been previously reported in several cancer cell lines; however, the extent of this loss across cancer types, as well as its mutational drivers, were unknown. Here, we show that RIPK3 expression loss occurs progressively during tumor growth both in patient tumor biopsies and tumor xenograft models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!