Type 1 diabetes (T1d) results from a sustained autoreactive T and B cell response towards insulin-producing β cells in the islets of Langerhans. The autoreactive nature of the condition has led to many investigations addressing the genetic or cellular changes in primary lymphoid tissues that impairs central tolerance- a key process in the deletion of autoreactive T and B cells during their development. For T cells, these studies have largely focused on medullary thymic epithelial cells (mTECs) critical for the effective negative selection of autoreactive T cells in the thymus. Recently, a new cellular player that impacts positively or negatively on the deletion of autoreactive T cells during their development has come to light, thymic B cells. Normally a small population within the thymus of mouse and man, thymic B cells expand in T1d as well as other autoimmune conditions, reside in thymic ectopic germinal centres and secrete autoantibodies that bind selective mTECs precipitating mTEC death. In this review we will discuss the ontogeny, characteristics and functionality of thymic B cells in healthy and autoimmune settings. Furthermore, we explore how approaches may help decipher the complex cellular interplay of thymic B cells with other cells within the thymic microenvironment leading to new avenues for therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566354 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.772017 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Application and Transformation of Traditional Chinese Medicine in Prevention and Treatment of Major Pulmonary Diseases Hefei 230031, China Key Laboratory of Xin'an Medicine, Ministry of Education Hefei 230038, China.
This study aimed to investigate the mechanism by which Shegan Mahuang Decoction(SGMH) and its bitter Chinese herbs(BCHs) regulated the lung-gut axis through the bitter taste receptor 14(TAS2R14)/secretory immunoglobulin A(SIgA)/thymic stromal lymphopoietin(TSLP) to intervene in the epithelial cell barrier of cold asthma rats. Fifty SD rats were randomly divided into the following five groups: normal group, model group, dexamethasone group, SGMH group, and BCHs group. A 10% ovalbumin(OVA) solution was used to sensitize the rats via subcutaneous injection on both sides of the abdomen and groin, combined with 2% OVA atomization and cold(2-4 ℃) stimulation to induce a cold asthma model in rats.
View Article and Find Full Text PDFMol Oncol
January 2025
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.
Rejuvenation of elementary immune system components has emerged as a promising strategy to deal with increased susceptibility to infections, cancers, autoimmune disorders, and low efficacy to vaccines, frequently accompanying aging. In this context, the thymus has gained significant attention. A recent study by Santamaria et al.
View Article and Find Full Text PDFTurk Arch Pediatr
January 2025
Division of Allergy and Immunology, Department of Pediatrics, Marmara University Faculty of Medicine, İstanbul, Türkiye.
Objective: Prolidase deficiency is a metabolic and immunological disorder that is inherited in an autosomal recessive manner. In prolidase deficiency, a broad spectrum of differences is observed in patients, ranging from asymptomatic to multisystem involvement. There is scarce information in the literature on the atypical features and immunophenotypes of this disease.
View Article and Find Full Text PDFSci Immunol
January 2025
Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.
View Article and Find Full Text PDFTransplantation
January 2025
Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
Background: Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells.
Methods: Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!